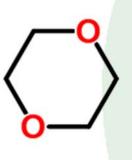


Remediation of 1, 4-Dioxane

Presented by Mike Marley February 12, 2016



- Basic properties of 1,4-dioxane with respect to remediation
- A discussion of applicable reliable remedial technologies with case studies
 - -Ex situ
 - Advanced oxidation
 - Sorption
 - –In situ
 - In situ chemical oxidation
- Promising remedial technologies
 - -Phytoremediation
 - -Thermally enhanced soil vapor extraction
 - -Bioremediation

Molecular Structure of 1,4-Dioxane

Molecular Formula: C₄H₈O₂

1,4-dioxane is a synthetic, volatile, colorless liquid that is miscible with water, most organic solvents, aromatic hydrocarbons and oils. It is used primarily as a stabilizer in chlorinated solvents. 1,4-dioxane is also used as a solvent for numerous commercial products and as a wetting/dispersing agent in textile processing. Recent article on a large plume in MI where 1,4-dioxane was used in processes for the manufacture of medical filters.

Basic Properties of 1,4-Dioxane in the Environment

Compound	Solubility (mg/L)	Koc (cm³/g)	Henry's Law Const. (unitless)	Vapor Pressure (mmHg)	Water Quality Criteria ug/L
MtBE	51,000	7.26			
PCE	200	155	0.753	24	5
Benzene	179	59	0.227	76	5
1,4-Dioxane	miscible	17	0.0002	37	3*

* = Levels may be lowered e.g. NJDEP Interim Ground Water Quality Criteria is now **0.4 ug/L**

- What do these properties mean?
 - Volatile as a residual product
 - Very soluble in groundwater
 - When dissolved, not easily adsorbed, therefore is not readily retarded in soils
 - When dissolved, prefers to be in aqueous vs. vapor phase i.e. not easily stripped out of groundwater
 - TYPICALLY MEASURED ON LEADING EDGE OF PLUME

Ex Situ Technologies

- Advanced oxidation
 - -key is formation of radical chemistry
- Sorption
 - -key is synthetic materials

Advanced Oxidation Case Study New Jersey

- Landfill leachate and groundwater extraction system (50-100 gpm)
- 1,4-dioxane up to 322 ug/L (has attenuated over time)
- Water is currently treated using powdered activated carbon/sand filtration (ZIMPRO Process)
- Advanced Oxidation Process (AOP) being added to address 1,4-dioxane that is not treated by ZIMPRO
- Bromide up to 1,300 ug/L

AOP Process

- Reaction between H₂O₂ and O₃ produces hydroxyl free radical (•OH) proven effective on 1, 4-dioxane
- Bromate (BrO₃⁻) is a common disinfection by-product
 - Formed during common water treatment process (e.g., chlorination, direct ozonation, AOP, etc.)
 - Naturally occurring bromide ions (Br⁻) in the raw ground water/surface water source is the pre-curser to bromate formation.
 - MCL for bromate is 10 ug/L in drinking water
- There is no GWQC for bromate in the New Jersey Administrative Code (NJAC 7:9C) Ground Water Quality Standard (GWQS)

Oxidant Dosing and Impact on Bromate Control / Balancing Act

- The molar ratio of hydrogen peroxide to ozone (H₂O₂:O₃) can be adjusted to minimize the formation of bromate. Typically, by increasing the amount of hydrogen peroxide relative to a fixed dose of ozone (i.e., increasing molar ratio of H₂O₂:O₃), the ozone will be more completely reacted with the hydrogen peroxide, and bromate formation will be reduced
- However, the trade-off is that the excess hydrogen peroxide can now react with the hydroxyl radicals (i.e., termed hydroxyl radical "scavenging"), which reduces the treatment efficiency of 1,4-dioxane
- Could use UV instead of ozone to avoid bromate but that has its own issues

1,4-Dioxane Destruction Results

Test Scenario	Impact on 1,4-Dioxane			Impact on Bromate		
High Spike, 240 ug/L 1,4-dioxane	O ₃	H ₂ O ₂	Final 1,4- dioxane	O ₃	H ₂ O ₂	Final Bromate
O ₃ Dose = 5, 10, 13, 20mg/L	(mg/L)	(mg/L)	(ug/L)	(mg/L)	(mg/L)	(ug/L)
$H_2O_2:O_3$ Ratio = 1.0 (all scenarios)						
7 injection nozzles except the 20 mg/L ozone dose which used 9 nozzles.	5	3.6	48	5	3.6	64
	10	7.1	6.6	10	7.1	190
	13	9.2	1	13	9.2	290
	20	14.2	1	20	14.2	430
	<u>Result</u> : 1,4-dioxane destruction is more effective as ozone dose is increased.			<u>Result</u> : Bromate conc. <u>increased</u> significantly as ozone dose increased.		

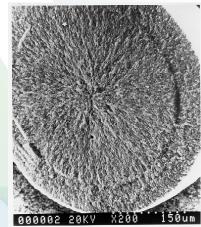
<u>Conclusions</u>: Hydrogen peroxide/ozone molar ratio requires optimization to reduce bromate formation. Also, likely to require more nozzle injection points to reduce bromate while achieving desired 1,4-dioxane destruction (7 to 9 nozzles used in Round 1, increased to 20 and 30 in Round 2).

Bromate Formation Control Results

Test Scenario	Impact on 1,4-Dioxane			Impact on Bromate		
High Spike, 240 ug/L 1,4-dioxane O ₃ Dose = 10.7 mg/L	Molar Ratio	2.5	4.0	Molar Ratio	2.5	4.0
H_2O_2 Dose = 19.0 and 30.4 mg/L $H_2O_2:O_3$ Ratio = 2.5 and 4.0	No. Inj. Noz.	Final 1,4-dioxane (ug/L)		No. Inj. Noz.	Inj. Noz. Final Bromate (ug/L	
20/30 injection nozzles	20	3.4	10.0	20	12	3
	30	7.2	21.0	30	4.9	2.2
	<u>Result</u> : 1,4-dioxane destruction is <u>less</u> effective as MR increases and as no. of injection nozzles increase.			<u>Result</u> : Bromate concentration <u>decreases</u> as MR increases and as no. of injection nozzles increase.		
Conclusions: Increasing the molar						

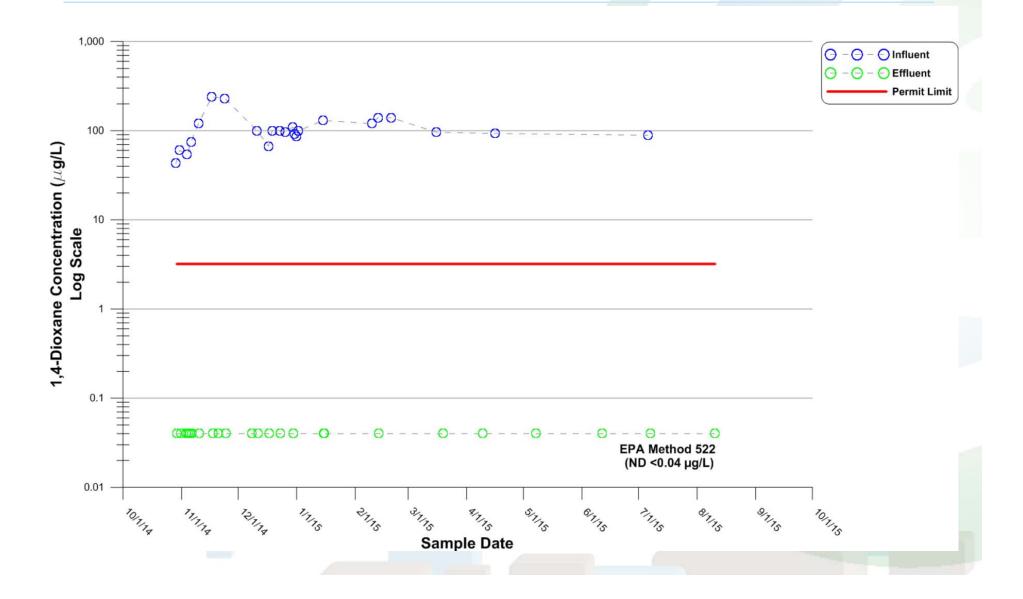

<u>Conclusions</u>: Increasing the molar ratio of hydrogen peroxide to ozone reduces the bromate formation and bromate was reduced to below 10 ug/L in some scenarios. However, 1,4-dioxane destruction becomes less efficient. In addition, increasing the number of injection nozzles also reduces bromate, but reduces the 1,4-dioxane destruction.

- GAC limited effectiveness on 1,4-dioxane cost effective?
- Synthetic Media can be used to collect various contaminants from liquids, vapor or atmospheric streams and be reused indefinitely

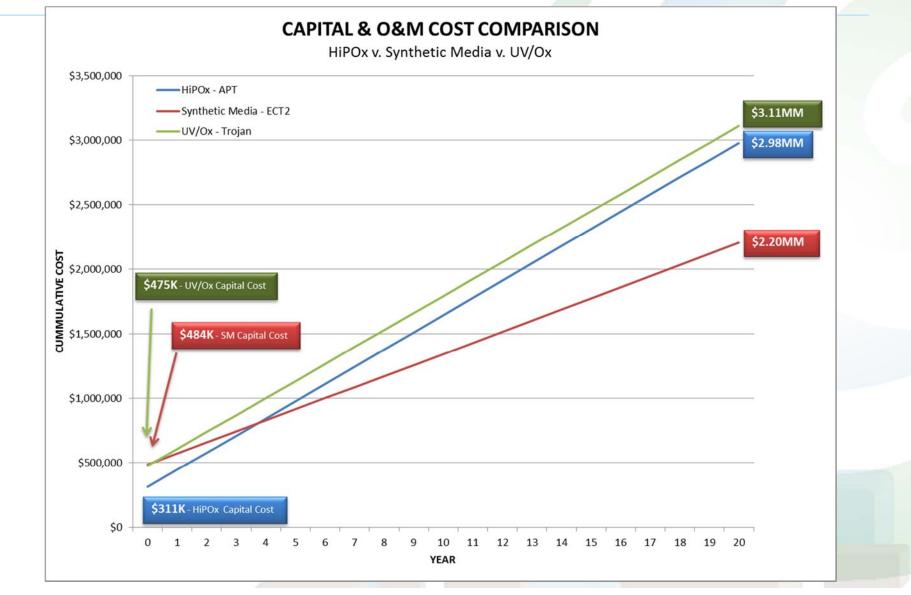


Properties of Dow's AMBERSORBTM 560

- Hydrophobic
- Unique pore size distribution
- High affinity for organic compounds: (simple adsorption mechanism)
- Can achieve non-detect effluent concentration at substantial loading rates
- Can typically reuse (thermally regenerate in-place) indefinitely
- Durable structure


■ect₂

St. Petersburg, FL 140-gpm System


- Design Basis:
 - Flow = **100-175 gpm**
 - 1,4-dioxane = 2,535 ug/L MAX more typically 100's ug/L
 - Total Organics = **17,450 ug/L**
 - Iron = 6-30 mg/l

■ect₂ Influent and Effluent 1,4-Dioxane

Cost Comparison 20 gpm System, CA

In Situ Technologies

- In situ chemical oxidation
 - Generally, key again is radical chemistry

XDD CASE STUDY The Problem: Solvent Contamination

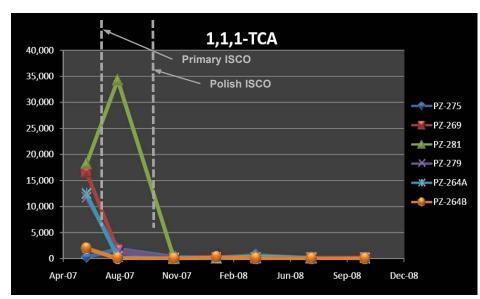
 Source Area: 	<u>Compound</u>	Historical Max. Conc.
-30×60 feet area		<u>(ug/L)</u>
–15 feet thick	1,1,1 - TCA	101,000
– Silty sands – dual level system	PCE	20,000
	1,4-Dioxane	3,000

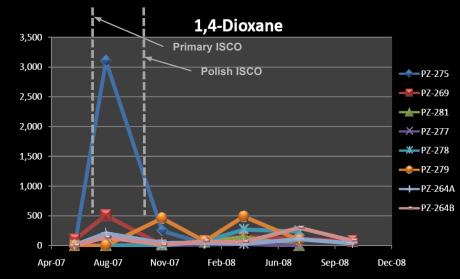
Located beneath active manufacturing plant

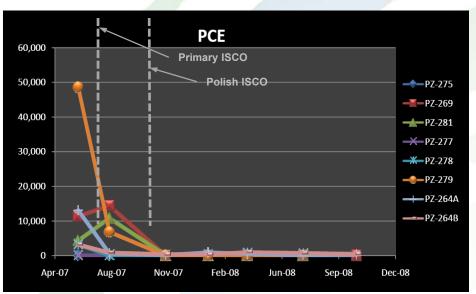
<u>Treatment Goal</u>:

- -Reduce groundwater to below 1 mg/L in source
- -Goal based on protection of downgradient receptor

The Solution: ISCO Treatment


- Selected Alkaline Activated Persulfate (AAP) for safety reasons
 - Greater in-situ stability
 - Reduced potential for gas evolution
- Evaluated AAP on bench scale
 - Soil buffering capacity
 - 2 to 4 g NaOH/Kg Soil
 - NaOH Mass < Soil Buffering Capacity + acid generated by persulfate reaction
- Two injection events


31,000 Kg Klozur (sodium persulfate)


15,300 Kg Sodium Hydroxide (NaOH)

Long Term Monitoring Results-VOCs

- 2-3 Orders Magnitude Reduction from baseline
- Target compounds remain below 1 mg/L objective
- Target compounds dropped to low ug/L level and remained over number years post treatment

In Situ Chemical Oxidation

Other:

- Persulfate / Permanganate Slow Release Cylinders
 - SERDP funded Laboratory Study
- Other hydroxyl radical chemistry
 - Peroxide / ozone systems
 - Other catalyzed peroxide / Fenton's type systems

Promising Remedial Technologies

- Phytoremediation
 - primarily removal by transpiration
- Thermally enhanced SVE
 - remove water and 1,4-dioxane from vadose zone ESTCP study
- Bioremediation both ex- and in situ

1,4-Dioxane Bioremediation

Bioremediation

- -Aerobic
 - Few organisms use 1,4 dioxane as an energy source
 - THF/Propane/others as energy: co-metabolic processes
 - Activity common with monooxygenase enzymes
- –Anaerobic (Nitrate, Iron, Sulfate, and Methanogenic)
 - SERDP Study in 2007 results: no degradation?

1,4-Dioxane Bioremediation

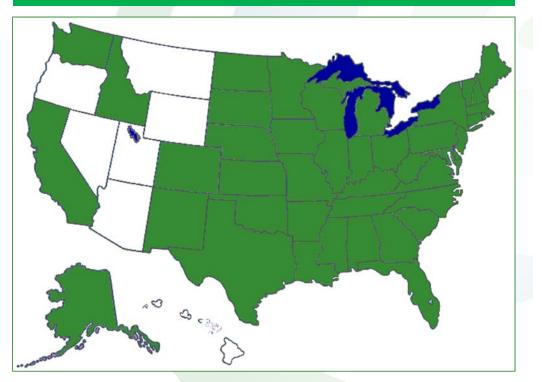
- MNA Evaluation CA GeoTracker + Air Force Sites / Wells (ES&T, 2015, 49, 6510–6518)
 - Only 30% of 193 CA sites had a statistically significant source decay term
 - –About 23% of CA sites had order of magnitude reduction in max. vs. recent 1,4 dioxane levels, very few with higher than 2 or 3 order reduction
 - -30% of 441 AF wells with decreasing trends, 70% with stable, no trend or increasing trend (increasing was 9%)
 - -AF wells : attenuation correlated positively with dissolved oxygen, and negatively for CVOCs and metals
 - Median half-Life 20-48 months for statistically significant attenuating sites / wells

DISCUSSION

Presented by:

Mike Marley

Marley@xdd-llc.com


1-800-486-4411

www.xdd-llc.com

Follow XDD:

- 🕤 :@XDD_LLC
- in :XDD Environmental

States with XDD Projects

