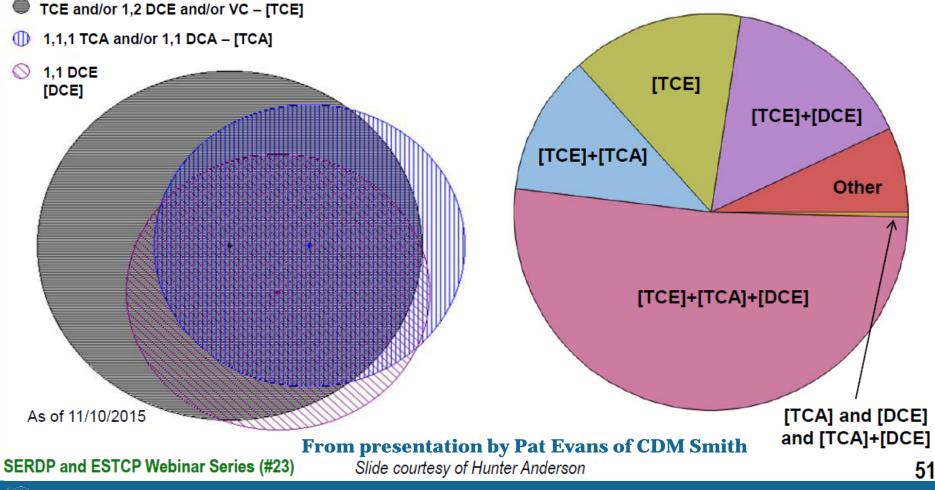


Remediation of 1, 4-Dioxane

Presented by Mike Marley April 26th, 2016


- Basic properties of 1,4-dioxane with respect to remediation
- A discussion of applicable reliable remedial technologies with case studies
 - Ex situ
 - Advanced oxidation
 - Sorption
 - In situ
 - In situ chemical oxidation
- Promising remedial in situ technologies
 - Phytoremediation
 - Air Stripping
 - Thermally enhanced soil vapor extraction
 - Bioremediation
 - Analytical Methods to demonstrate destruction

Dioxane and Solvents Co-Occur

cVOC co-Occurrence at USAF Sites

Dioxane Detections at USAF Sites (n = 1,663 wells)

Basic Properties of 1,4-Dioxane in the Environment

			Henry's Law	Vapor	
	Solubility	Koc	Const.	Pressure	Water Quality Criteria
Compound	(mg/L)	(cm ³ /g)	(unitless)	(mmHg)	ug/L
MtBE	51,000	7.26	0.025	245	13
PCE	200	155	0.753	24	5
Benzene	179	59	0.227	76	5
1,4-Dioxane	miscible	17	0.0002	37	~3*

 * = State specific guidelines, levels may be lowered e.g. NJDEP Interim Ground Water Quality Criteria is now **0.4 ug/L**

- What do these properties mean?
 - Volatile as a residual product
 - Very soluble in groundwater
 - When dissolved, not easily adsorbed, therefore is not readily retarded in soils
 - When dissolved, prefers to be in aqueous vs. vapor phase i.e. not easily stripped out of groundwater
 - TYPICALLY MEASURED ON LEADING EDGE OF PLUME

Ex Situ Technologies

- Advanced oxidation
 - -key is formation of radical chemistry
- Sorption
 - -key is synthetic materials

Advanced Oxidation XDD Case Study

- Landfill leachate and groundwater extraction system (50-100 gpm)
- 1,4-dioxane up to 322 ug/L (has attenuated over time)
- Water is currently treated using powdered activated carbon/sand filtration
- Advanced Oxidation Process (AOP) being added to address 1,4-dioxane that is not treated by PAC / filtration
- Complication: Bromide up to 1,300 ug/L

AOP Process

- Reaction between H₂O₂ and O₃ produces hydroxyl free radical (•OH) proven effective on 1, 4-dioxane
- Bromate (BrO₃⁻) is a common disinfection byproduct
 - -Formed during common water treatment process (e.g., chlorination, direct ozonation, AOP, etc.)
 - -Naturally occurring bromide ions (Br⁻) in the raw ground water/surface water source is the pre-curser to bromate formation.
 - -MCL for bromate is 10 ug/L in drinking water

Oxidant Dosing and Impact on Bromate Control / Balancing Act

- The molar ratio of hydrogen peroxide to ozone (H₂O₂:O₃) can be adjusted to minimize the formation of bromate. Typically, by increasing the amount of hydrogen peroxide relative to a fixed dose of ozone (i.e., increasing molar ratio of H₂O₂:O₃), the ozone will be more completely reacted with the hydrogen peroxide, and bromate formation will be reduced
- However, the trade-off is that the excess hydrogen peroxide can now react with the hydroxyl radicals (i.e., termed hydroxyl radical "scavenging"), which reduces the treatment efficiency of 1,4-dioxane
- Could use UV instead of ozone to avoid bromate but that has its own issues

1,4-Dioxane Destruction Results

Test Scenario	Impact on 1,4-Dioxane		Impact on Bromate			
High Spike, 240 ug/L 1,4-dioxane O ₃ Dose = 5, 10, 13, 20mg/L	O ₃ (mg/L)	H ₂ O ₂ (mg/L)	Final 1,4- dioxane (ug/L)	O ₃ (mg/L)	H ₂ O ₂ (mg/L)	Final Bromate (ug/L)
$H_2O_2:O_3$ Ratio = 1.0 (all scenarios)						
7 injection nozzles except the 20 mg/L ozone dose which used 9 nozzles.	5	3.6	48	5	3.6	64
	10	7.1	6.6	10	7.1	190
	13	9.2	1	13	9.2	290
	20	14.2	1	20	14.2	430
	<u>Result</u> : 1,4-dioxane destruction is more effective as ozone dose is increased.			<u>Result</u> : Bromate conc. <u>increased</u> significantly as ozone dose increased.		

<u>Conclusions</u>: Hydrogen peroxide/ozone molar ratio requires optimization to reduce bromate formation. Also, likely to require more nozzle injection points to reduce bromate while achieving desired 1,4-dioxane destruction (7 to 9 nozzles used in Round 1, increased to 20 and 30 in Round 2).

Bromate Formation Control Results

Test Scenario	Impact on 1,4-Dioxane			Impact on Bromate		
High Spike, 240 ug/L 1,4-dioxane O ₃ Dose = 10.7 mg/L	Molar Ratio	2.5	4.0	Molar Ratio	2.5	4.0
H_2O_2 Dose = 19.0 and 30.4 mg/L $H_2O_2:O_3$ Ratio = 2.5 and 4.0	No. Inj. Noz.	Final 1,4-dioxane (ug/L)		No. Inj. Noz. Final Bromate (ug/L)		
20/30 injection nozzles	20	3.4	10.0	20	12	3
	30	7.2	21.0	30	4.9	2.2
	<u>Result</u> : 1,4-dioxane destruction is <u>less</u> effective as MR increases and as no. of injection nozzles increase.			<u>Result</u> : Bromate concentration <u>decreases</u> as MR increases and as no. of injection nozzles increase.		

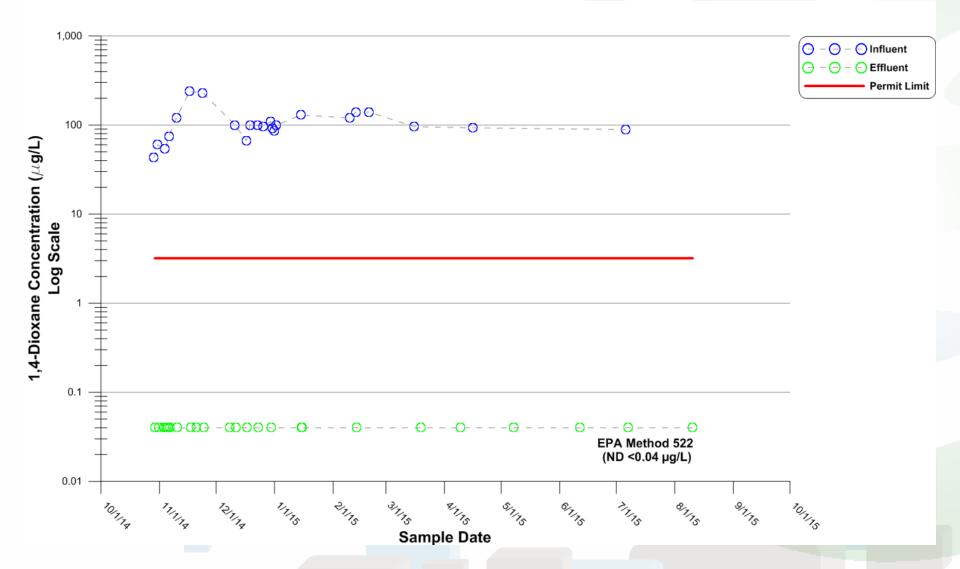
<u>Conclusions</u>: Increasing the molar ratio of hydrogen peroxide to ozone reduces the bromate formation and bromate was reduced to below 10 ug/L in some scenarios. However, 1,4-dioxane destruction becomes less efficient. In addition, increasing the number of injection nozzles also reduces bromate, but reduces the 1,4-dioxane destruction.

Sorption

ect₂

• Synthetic Media can be used to collect various contaminants from liquids, vapor or atmospheric streams and be reused indefinitely

AMBERSORB™ 560


Slides courtesy of Steven Woodard, ect₂

■ect₂

Case Study: St. Petersburg, FL 140-gpm System

- Design Basis:
 - Flow = **100-175 gpm**
 - 1,4-dioxane = **2,535 ug/L MAX more typically 100's ug/L**
 - Total Organics = **17,450 ug/L**
 - Iron = **6-30 mg**/**l**

■ect₂ Influent and Effluent 1,4-Dioxane

In Situ Technologies

- In situ chemical oxidation
 - Generally, key again is radical chemistry

XDD ISCO CASE STUDY The Problem: Solvent Contamination

 Source Area: 	<u>Compound</u>	<u>Historical Max. Conc.</u>
$-30 \ge 60$ feet area		<u>(ug/L)</u>
-15 feet thick	1,1,1-TCA	101,000
–Silty sands – dual level system	PCE	20,000
	1,4-Dioxane	3,000

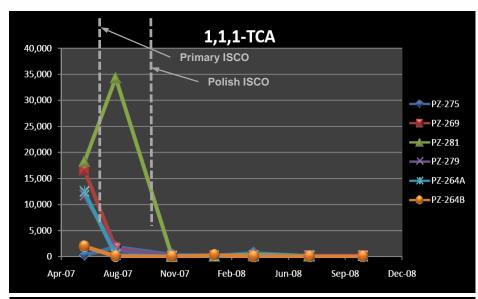
Located beneath active manufacturing plant

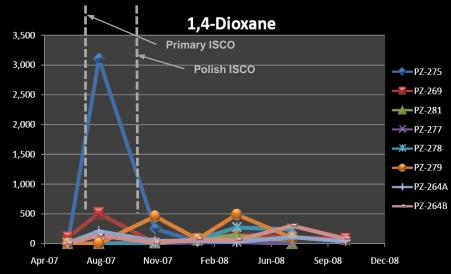
• <u>Treatment Goal</u>:

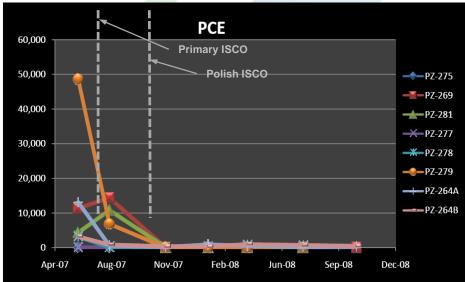
-Reduce groundwater to below 1 mg/L in source

-Goal based on protection of downgradient receptor

The Solution: ISCO Treatment


- Selected Alkaline Activated Persulfate (AAP) for safety reasons
 - Greater in-situ stability
 - Reduced potential for gas evolution
- Evaluated AAP on bench scale
 - Soil buffering capacity
 - -2 to 4 g NaOH/Kg Soil
 - NaOH Mass < Soil Buffering Capacity + acid generated by persulfate reaction
- Two injection events


31,000 Kg Klozur (sodium persulfate)


15,300 Kg Sodium Hydroxide (NaOH)

Long Term Monitoring Results-VOCs

- 2-3 Orders Magnitude Reduction from baseline
- Target compounds remain below 1 mg/L objective
- Target compounds dropped to low ug/L level and remained over number years post treatment

In Situ Chemical Oxidation

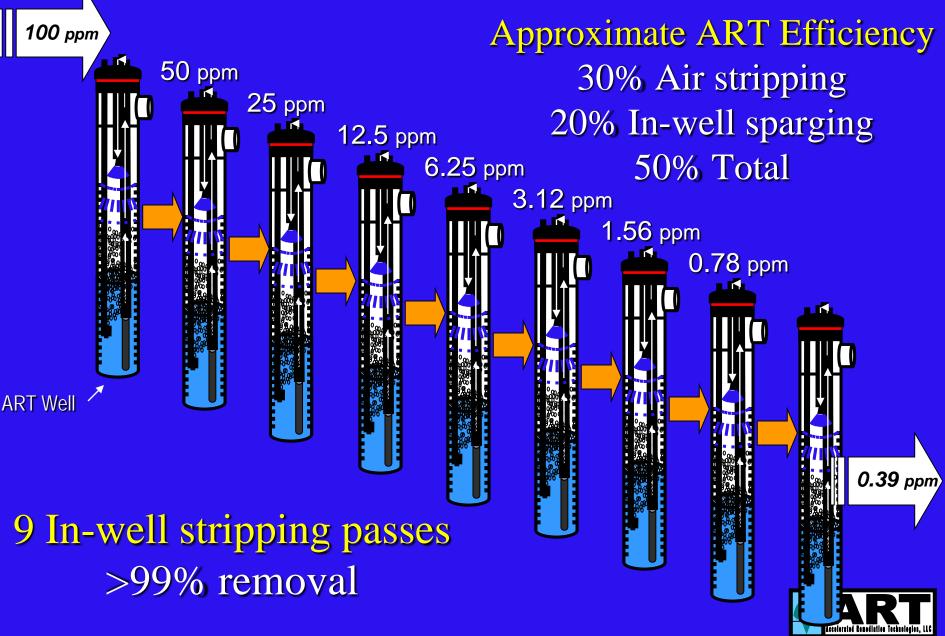
Other:

- Carus Persulfate / Permanganate Slow Release Cylinders — ESTCP- ER- 201324: funded Laboratory Study
- Other hydroxyl radical chemistry
 - Peroxide / ozone systems
 - Ozone only systems?
 - Other catalyzed peroxide / Fenton's type systems

Promising Remedial Technologies

- Phytoremediation

 primarily removal by transpiration
- <u>Air Stripping</u>
- <u>Thermally enhanced SVE</u>
- Bioremediation both ex- and in situ



Air Stripping

Slides courtesy of Mohamed Odah, ART

ART Removal Rate

1,4 Dioxane Case History

- 1,4 dioxane and VOC impacted site
- Bedrock overlain by saprolitic soils
- Levels reached asymptote
- Numerous technologies screened
- ART demonstration project
- Selection based on past recalcitrant/VOC performance history

	MW-1	MW-2
Initial concentrations (µg/L)	25,000	28,000
90 days later (µg/L)	7,400	2,400
Percent reduction	76%	91%

- 1,4 Dioxane vapor concentrations exceeded 1.1 PPMV
- 2.25 pounds removed

Mass balance suggests partial biodegradation, partial stripping

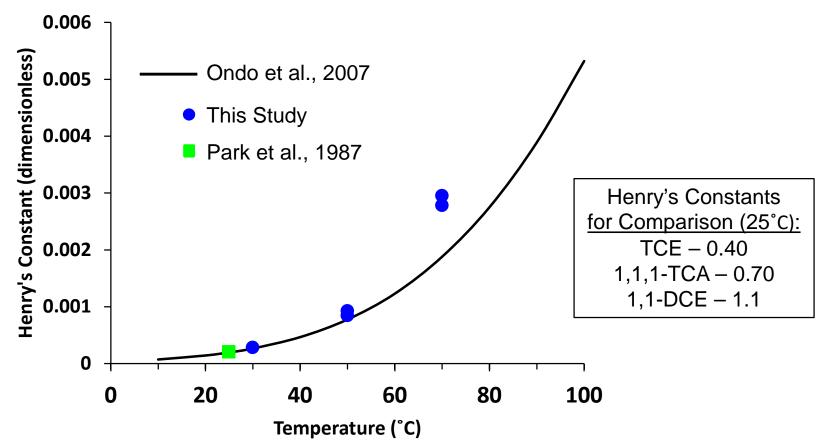
Thermally Enhanced SVE

Slides courtesy of Rob Hinchee, IS&T

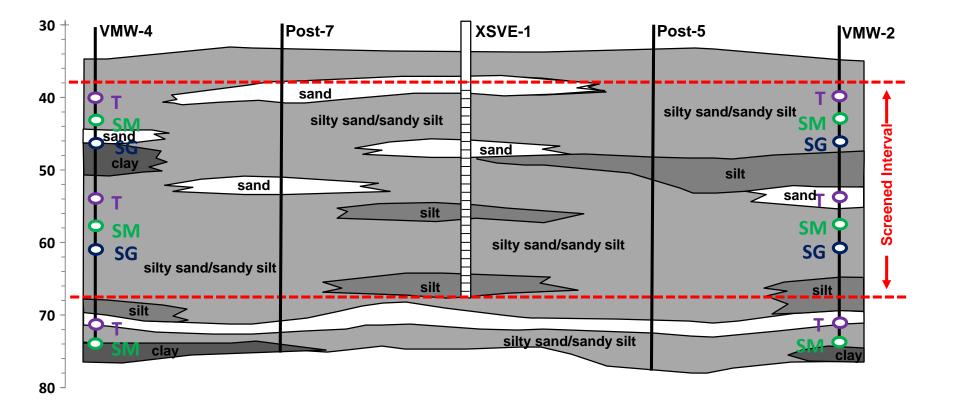
1,4-Dioxane Remediation by Extreme Soil Vapor Extraction (XSVE)

ER 201326

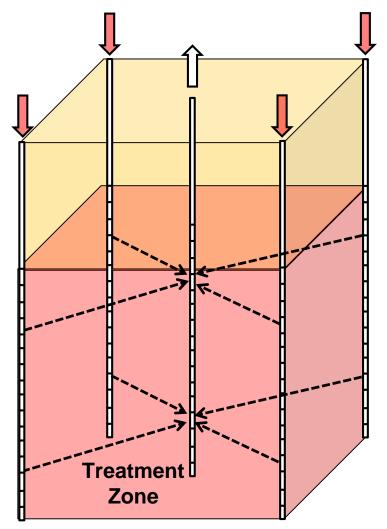
Rob Hinchee

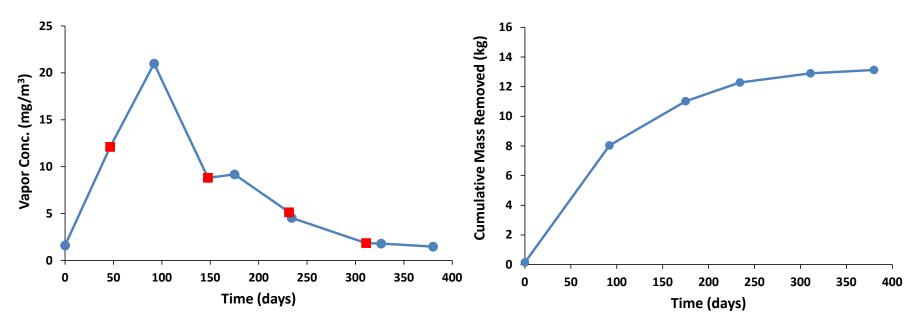

Integrated Science & Technology, Inc.; Arizona State University; CO School of Mines; AECOM

March 23, 2016


1,4-Dioxane Henry's Constant

- Henry's Constant increases ~13-fold from 20 to 70°C.
- SVE removal efficiency for 1,4-dioxane should increase at elevated temperatures.


Cross-Section Former McClellan AFB, CA


Test Design

- > 4 injection wells 20 ft corners
 - ~100 cfm; ~90 °C
- ➤ 1 extraction well center
 - ~100 cfm
- Iow carbon steel well casing
- concrete grout
- ➤ screened interval 38 68 ft
- existing vapor treatment system
- condensate collection

Operation (1,4-Dioxane Mass Removal)

Demonstration Objectives

- Reduce 1,4-dioxane in treatment zone by >90%
- Minimize potential downward migration of 1,4-dioxane

Project Progress and Results

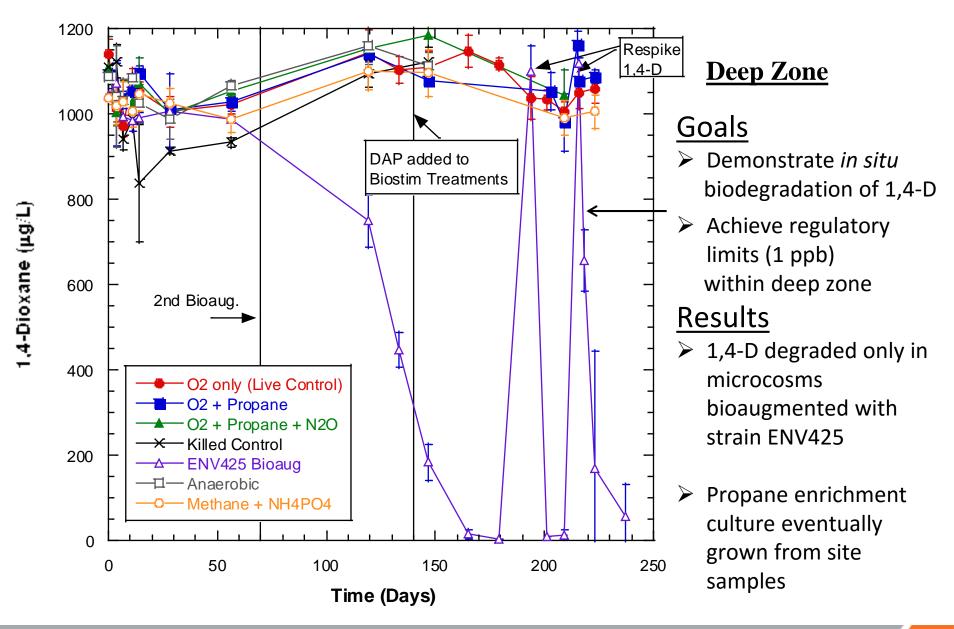
- 1,4-dioxane was reduced > 90% in treatment zone
 - Mass removal estimates (~13 kg 1,4-dioxane at shutdown) consistent with before and after soil concentrations
- No apparent downward migration of 1,4-dioxane

Bioremediation

1,4-Dioxane Bioremediation

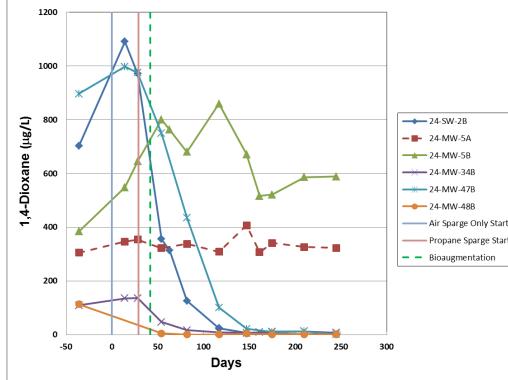
Aerobic

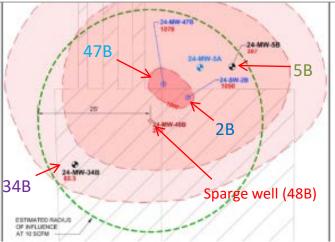
- -Few organisms use 1,4 dioxane as an energy source (CB 1190)- appears more difficult for remediation
- -THF/Propane/Toluene + others as energy source: co-metabolic processes – more reliable in remediation, but *may* need bioaugmentation
- -Activity common with monooxygenase enzymes
- Anaerobic (Nitrate, Iron, Sulfate, and Methanogenic)
 - -SERDP ER-1422 Study in 2007 [Rob Steffan, CB&I]: no degradation ?


<u>Co-metabolic</u> Bioremediation

Slides courtesy of David Lippincott, CB&I

1,4-Dioxane in Vandenberg AFB Microcosms




- Startup \rightarrow 10 SCFM
 - Monitoring for water level mounding, bubbling, and DO
- 1 month air sparge only (control phase)
 - o One 45 minute pulse per day
- Optimization Period
 - Up to 40% of the LEL (0.83 lbs/day)
 - o 6 cycles per day (36 minute pulses)
- Bioaugmentation with ENV425 on day 42 (36 liters)
- Nutrient Injections (DAP)
- Performance Monitoring
 - o GW Sampling
 - o Well headspace (LEL)
 - o Biotraps (3 deployments)

1,4-Dioxane Treatment Results

	Well	Day 14	Day 245	% Degraded
	48B (sparge)	113 ppb	<1.0 ppb	>99 %
	47B	997 ppb	1.2 ppb	>99%
t	2B	1090 ppb	1.1 ppb	>99%
	34B	135 ppb	7.3 ppb	95%
	5B*	548 ppb	588 ppb	<1%
	5A (control)	346 ppb	323 ppb	<1%

From Lippincott et al., 2015, Ground Water Monitoring & Remediation, 35, no. 2: 81-92

Supported by contract FA8903-11-C-8101 US Air Force Civil Engineer Center

1,4-Dioxane MNA Evaluation (SERDP ER-2307: David T. Adamson et. al., ES&T, 2015, 49, 6510-6518)

- Data Source CA GeoTracker + Air Force Sites / Wells
 - Only 30% of 193 CA sites had a statistically significant source decay term
 - About 23% of CA sites had order of magnitude reduction in max. vs. recent 1,4 dioxane levels, very few with higher than 2 or 3 OoM reduction
 - -30% of 441 AF wells with decreasing trends, 70% with stable, no trend or increasing trend (increasing was 9%)
 - -AF wells : attenuation correlated positively with dissolved oxygen, and negatively for CVOCs and metals
 - Median half-Life 20-48 months for statistically significant attenuating sites / wells

Diagnostics for Degradation

Pace Analytical®

- CSIA on 1,4-dioxane
 - unequivocal proof of degradation
 - rates of degradation
 - potentially prove multiple sources
- CSIA Detection Levels for 1,4-dioxane
 - $\quad \delta^{13}C = 1 \text{ ug/l}$
 - $\delta^2 H = 20 \text{ ug/l}$

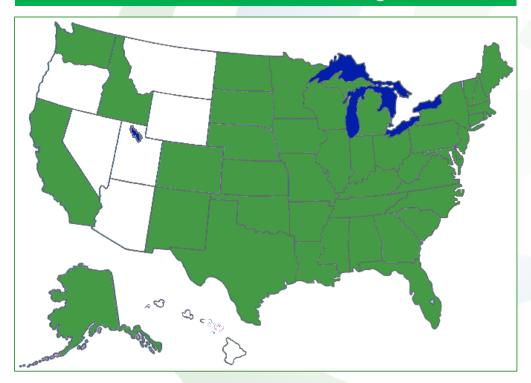
• qPCR

- Dioxane monooxygenase (DXMO) and ALDH to assess aerobic metabolism by *P. dioxanivorans* CB1190
- Soluble methane monooxygenase (sMMO) and ring hydroxylating toluene monoxygenases (RMO, RDEG, PHE) to assess aerobic cometabolism
- Stable Isotope Probing (SIP)
 - -¹³C "label" serves as a tracer
 - Quantification of ${}^{13}C$ in biomass and CO_2 demonstrates dioxane biodegradation

DISCUSSION

Presented by:

Mike Marley


Marley@xdd-llc.com

1-800-486-4411

www.xdd-llc.com

• in :XDD Environmental

States with XDD Projects

