

Remedial Options for PFAS

Presented by:

Mike Marley, M.Sc., CT LEP Principal XDD Environmental Ellen Moyer, P.E., Ph.D. Principal Greenvironment, LLC

Raymond Ball, P.E., Ph.D. Principal EnChem Engineering, Inc.

April 4, 2017

Agenda

Overview of PFAS and Properties – Ellen Moyer
 Current State of Remedial Options – Mike Marley
 Resin/Carbon Case Study – Mike Marley
 Chemical Oxidation Case Study – Raymond Ball
 Questions/Answers

Overview of PFAS and Properties

What are PFAS?

- Per- and polyfluoroalkyl substances
- Diverse class of chemicals containing C-F bonds, which are extremely strong and stable
 - Definition of PFAS and which chemicals are included varies there are dozens of PFAS
 - Many PFAS are carbon chains of varying lengths
 - \circ Per FAS all C in the chain are bonded to F
 - \circ Poly FAS not all C in the chain are bonded to F
 - Other atoms in PFAS can include atoms such as O, H, S, and/or N
- □ Most in the news:
 - Perfluorooctanoic acid PFOA (C8)
 - Perfluorooctane sulfonate PFOS (C8)
- **PFAS properties:**
 - Water soluble
 - Low volatility
 - Resistant to biodegradation?
- **Certain chemicals can degrade to PFOA**

GREENVIRONMENT

Chemical/Physical Properties

Property	PFOA	PFOS	Benzene	
Chemical Formula	C ₈ HF ₁₅ O ₂	C ₈ HF ₁₇ O ₃ S	C ₆ H ₆	
Molecular Weight (g/mol)	414.09	500.13	78.11	
Boiling Point (°C)	192.4	259	80	
Vapor Pressure (mm Hg at 25 °C)	0.525	~0.002	86	
Henry's Law Constant @ 25°C (unitless)	Not measurable	Not measurable	0.225	
K _{oc} (temperature as specified)	115	371	79 (at 25 °C)	
Solubility in Water (mg/L)	~9,500 (at 25 °C)	680 (temp. not stated)	1,780 (at 25 °C)	
	USEPA 2016	USEPA 2016		

GREENVIRONMENT)

- □ PFAS resist heat, oil, grease, and water
- Used in industry and consumer products worldwide since the 1950s products contain a mix of carbon lengths and impurities
- Waterproof clothes, non-stick cookware, take-out containers
- □ Wire insulation
- **D** Paper and paints
- □ Fire-fighting foams
- **Carpet**
- **G** Furniture

https://commons.wikimedia.org/w/index.php?curid=2390636

https://commons.wikimedia.org/w/index.php?curid=31071118

Occurrence

- Found worldwide in the environment, wildlife, and humans
 - Including the Arctic and Antarctic
- **2015** study by U.S. National Health and Nutrition Examination Survey:
 - PFAS found in 97 percent of human blood samples
- **2013-2015** Safe Drinking Water Act testing:
 - PFAS found in 66 water supplies serving more than 16 million Americans in 33 states with at least one sample at or above EPA drinking water health advisories
- **Tendency for large dilute plumes**
- **Difficult to sample**
 - Cross-contamination issues
- **Difficult to laboratory analyze**
 - Some PFAS not detected by commercial labs

<u> https://commons.wikimedia.org/wiki/File:Antarctic, adelie penguins (js) 19.jpg</u>

Concerns

- □ Most concern with longer-chain PFAS (C8 or greater e.g., PFOA, PFOS)
- Persist, travel long distances, and bioaccumulate
- Potential health effects (debated):
 - Affect developing fetus and child including learning and behavior
 - Decrease fertility
 - Disrupt hormones
 - Increase cholesterol
 - Suppress immune system
 - Increase cancer risk

Concerns

- □ EPA established health advisories for PFOA and PFOS at 70 ng/L (individually and combined, for lifetime exposure from drinking water) (ng/L = ppt)
 - Based on lab studies of effects on rats and mice and epidemiological studies of exposed human populations
 - EPA has no plans to establish Maximum Contaminant Levels
 - EPA plans to develop Regional Screening Levels for site cleanup
- **State requirements vary widely**
 - Some states are looking at more than PFOA and PFOS

<u>Current State of</u> <u>Remedial Options</u>

Remedial Technologies with "Success" in PFAS Treatment

Physical treatment/removal

- Filtration/reverse osmosis*
- Adsorption/ion exchange (IX)*
- Excavation + disposal
- In-situ stabilization

Chemical Oxidation

- Various high energy oxidant systems
- Sonolysis
- Photolysis

Biotransformation

- Partial
 Not for C-F bond?
 Possible in time?
- "Other"
 - High temperature > 1,100 °C
 - Electrochemical

* typical component of pump and treat

<u>Summary of Ex Situ</u> <u>Water Treatment Options</u>

Compound	Acronym	Molecular Weight (g/mole)	Aeration	Coagulation Dissolved Air Floatation	Coagulation Flocculation Sedimentation Filtration	Conventional Oxidation (MnO ₄ , O ₃ , ClO ₂ , CLM, UV-AOP)	Anion Exchange (Select Resins Tested)	Granular Activated Carbon	Nano Filtration	Reverse Osmosis
Perfluorobutanesulfonic Acid	PFBS	300								
Perfluoroheptanoic Acid	PFHpA	364								
Perfluorohexanesulfonic Acie	PFHxS	400								
Perfluorooctanoic Acid	PFOA	414								
Perfluorononanoic Acid	PFNA	464		unknown			assumed	assumed		
Perfluorooctane Sulfonate	PFOS	500								
	-						Table mod	lified from E. D	ickenson and C	. Higgins 2016
		> 90% removal			>10%, < 90% remova	I		< 10% remova		

E. Dickenson and C. Higgins, "Treatment Mitigation Strategies for Poly- and Perfluoroalkyl Substances," Water Research Foundation, 2016.

Filtration Essentially "Sieving" of PFAS molecules

□ Nano-Filtration (NF)

- PFAS have molecular weight cutoff (MWCO) of approximately 300 500 Daltons
- NF MWCO > 200 Daltons
- >90% effective most PFAS
- Ultra and micro-filtration low effectiveness

Reverse Osmosis

- Polymers 100 200 Daltons
- >90% effective most PFAS

Concentrated waste streams result

<u>Adsorption/Ion Exchange</u> (nOn-destructive)

□ Carbon-based systems

- Ex situ activated carbon systems / GAC (current go to approach)
- In situ injectable carbon-based systems

□ Clays (or blend of sorbent-based systems)

- e.g., RemBind or MatCare
- □ Zeolites? in R&D
- □ Synthetics resins gaining traction due to capacity/effectiveness

Carbon versus IX Resins

- **Carbon (not all carbons created equal)**
 - Proven effective multiple sites and >1000 point of entry treatment (POET) systems
 - Regeneration, at high temperature: "destroys" PFAS but may reduce capacity
 - Lower capacity than IX
 - May be ineffective on short chain PFAS
 - Still evaluating the level of concern on short chain PFAS?
 - Can be more cost-effective, but site-specific analysis required
 If shorter duration operations, lower PFAS concentrations, and less natural organic matter

- Number case studies increasing
- High capacity for PFAS adsorption
- Working on resins for improving short chain PFAS removal
- Can be more cost-effective, but site-specific analysis required
- Regeneration and PFAS destruction research/demonstration is ongoing

Treatability studies are essential for design, etc.

PFOA Breakthrough at 5-min EBCT

BV = bed volumes EBCT = empty bed contact times

PFOS Breakthrough at 5-min EBCT

BV = bed volumes EBCT = empty bed contact times

Volume Treated Before Breakthrough

Regeneration of IX Resin at Pilot Scale

<u>Chemical Oxidation</u> <u>In Situ or Ex Situ</u>

- Several bench studies / few pilots performed over last several years showing partial to full destruction of PFAS
 - Focus has typically been on PFOA and PFOS
- Common theme observed in chemical oxidation approaches is success when creating complex chemistries / radical mixtures
 - Creating reductive and oxidative radicals
- Also success under high temperature / pressure conditions practical?
 - E.g. high temperature permanganate
- □ Following slides provide examples of bench and pilot studies

- Patented persulfate-based oxidant mixture
- □ Safe to apply under buildings
- □ Small site footprint, generation entirely enclosed
- Proven effective for in-situ treatment of a wide range of traditional and emerging organic contaminants
- Applicable to *in-situ* remediation and/or *ex-situ* treatment in an above-ground reactor
- Selected by the Air Force for a field demonstration in Virginia to treat mixed organic waste *in-situ*
- □ PFAS discovered during field demonstration

Field Demonstration at the JBLE Fire Training Area (FTA) in Hampton, VA

□ Historical military FTA – aqueous film-forming foam (AFFF) released

22

- □ Mix of contaminants in site soil & GW at high concentrations
 - Total chlorinated solvents (PCE, TCA, DCB): 10 250 mg/l
 - BTEX:
 - Total SVOCs (mostly phenolics):
 - Total of 9 detected PFAS:
 - PFOS (dominant PFAS):
- **DNAPL present**
- **Complex geology**

0.1 – 5 mg/l 0.5 – 50 mg/l 28 – 280 µg/l 7 – 200 µg/l

Engineering, Inc

Field Demonstration for CVOCs: Saturated Zone

Post-injection

EnChem

Engineering, Inc.

Pre-injection

Field Demonstration Results for PFAS

OxyZone® Injections: April-May & July-August 2013

Field Demonstration Results for PFAS

Overall OxyZone[®] Impact on PFAS: Lines of Evidence Approach

21-79% decrease in total groundwater concentration of the 9 detected PFAS in the Test Cell

PFOS:

- Had the greatest reduction in groundwater concentration of all PFAS
- Statistical comparison of wells within the Test Cell to those outside the Test Cell showed PFAS concentrations decreased within Test Cell, not outside
- Groundwater concentrations of conservative tracer chloride showed no (dilution) impact from injections

Field Demonstration Site: Bench-Scale Test Results

Spiked Deionized Water (after 2 hours OxyZone® treatment)					
Specific PFC	Initial concentration - ppb	Final concentration - ppb	% removal		
PFOS: (8 carbon sulfonate)	93	1	99%		
PFOA: (8 carbon acid)	83	1	99%		
PFHpS (7 carbon sulfonate)	4	0.4	90%		
PFHxA (6 carbon acid)	6	6	no change		
Total of 4 PFAS	186	8.4	95%		

PFAS Contaminated Site GW spiked with additional PFOS and PFOA - 6 hrs. OxyZone®						
Specific PFAS	Initial concentration - ppb	Intermediate (3 hrs.) concentration - ppb	Final (6 hrs.) Concen- tration - ppb	% removal		
PFOS: (8 carbon sulfonate)	138	25	3.6	97%		
PFOA: (8 carbon acid)	33	22	1.6	95%		
PFHpS (7 carbon sulfonate)	6.7	3.9	2.3	65%		
PFHpA (7 carbon acid)	5.5	< 0.4	< 0.2	96%		
PFHxA (6 carbon acid)	15	43	< 8.5	44%		
PFHxS (6 carbon sulfonate)	68	99	< 0.2	99.7%		
PFPeA (5 carbon acid)	11	< 2.0	< 0.9	92%		
PFBS (4 carbon sulfonate)	8.7	14	< 0.4	95%		
PFBA (4 carbon acid)	3.0	5.5	< 0.4	86%		
Total of 9 PFAS	289	127	18	94%		

Additional Bench-Scale Testing

- **Distilled water spiked with PFOS and PFOA**
- **Results: 99.9% reduction of PFOS, PFOA; 86% fluoride released**

EnChem

Engineering, Inc

Additional Bench-Scale Testing

- □ AFFF groundwater sample #1
- **Results: 99% reduction of PFOS; 39% fluoride released**

Additional Bench-Scale Testing

- □ AFFF groundwater sample #2
- **Results: 99% reduction of PFOS; 750% fluoride released**

Summary

Field Demonstration

- Based on MIPs data, overall VOC and SVOC contaminant mass significantly reduced in and around Test Cell where OxyZone[®] was injected
- PFAS were discovered during base line testing and monitored
- Groundwater data analysis supported a statistically significant reduction in PFAS concentrations in groundwater, indicating that OxyZone[®] processes successfully degraded PFAS in-situ in the presence of mixed organic NAPL waste

□ All Bench-Scale Testing

- Subsequent evaluation of OxyZone[®] in the laboratory repeatedly confirmed PFAS decrease and de-fluorination
 - \circ Up to 99.9% destruction (to less than 0.2 ppb) of PFOS and PFOA
 - \circ 80 750% defluorination of PFAS organofluorine to fluoride ion

Conclusion

Results indicate that OxyZone[®] has the capability to decrease PFAS to very low concentrations, either in situ or ex situ.

Delivery Options

Recirculation System:

- In-situ OxyZone[®] treatment of soil and groundwater
- Ex-situ OxyZone[®] reactor
- Could supplement existing pump and treatment system

Other Options:

- Horizontal injection wells on plume transect
- Vertical injection wells on plume transect

Last Thoughts

- □ PFAS on most people's radar screen for just a few years
- □ Many data gaps:
 - ID of PFAS chemicals and their breakdown products
 - Analytical chemical ID and low-level quantification
 - Physical properties of less common PFAS chemicals
 - Health effects and appropriate cleanup levels
 - Biodegradability
 - Dealing with residuals containing fluorine/fluoride
- Low concentrations of concern present challenges for sampling, analysis, and remediation
- **Common technologies that can work well for PFAS in water**
 - Filtration (nano filtration, reverse osmosis)
 - Granular activated carbon
 - Ion exchange resin
 - Chemical oxidation

Question and Answers

For any questions that we cannot get to during the Q/A period, please feel free to contact the presenters @:

- Michael Marley (<u>marley@xdd-llc.com</u>)
- Dr. Ellen Moyer (<u>ellenmoyer@em-green.com</u>)
- Dr. Raymond Ball (<u>rball@en-chem.com</u>)

The presentation slides will be made available for registrants within a few days of the webinar

