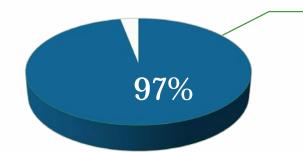


## **Treatability Testing Webinar**

#### **Presented by**


Laurel Crawford Treatability Laboratory Manager Michael Marley President and Founder

March 29th, 2018



# **Why Listen to XDD?**

- Staff focused on remediation since early 1980's
- Involved in early development of most remediation technologies:
  - Soil vapor extraction (SVE)
  - Air (AS) and oxygen sparging / biosparging
  - In situ chemical oxidation (ISCO) and reduction (ISCR)
  - Aerobic and anaerobic bioremediation
  - Thermally enhanced remediation
  - Vapor intrusion mitigation
- Design and perform treatability testing for end-users, consultants, and contractors
- Wide range of capabilities and experience to solve difficult design problems



XDD Meets Project Objectives



### **XDD Treatability Laboratory Services**

- Chemical Oxidation
  - Catalyzed Hydrogen Peroxide
  - Activated Persulfate
  - Permanganate
  - Ozone
  - Solid Phase Oxidants
- Chemical Reduction
  - Zero Valent Iron (ZVI)
  - Bi-Metallic Particles (e.g., Ni-catalyzed ZVI)
  - Metal Sulfides
  - Mixed Reagents (e.g., EHC)
- Bioremediation: Biostimulation /Bioaugmentation
  - Aerobic
  - Anaerobic
- In Situ Stabilization / Solidification
  - VOCs SVOCs
  - Metals
- Thermal Enhancements
  - SVE
  - Bioremediation
- Surfactant Enhanced Product Recovery / EcoVac
- Approved / Permitted to receive and test international soils
- Custom testing / research (e.g., SERDP metals immobilization during ISCO, PFAS)





### **XDD Treatability Laboratory Services**

### In-House analytical capabilities

- Dissolved Gases (methane, ethene, ethane)
- Volatile Organic Compounds
- Anions (chloride, bromide, sulfate, nitrate, nitrite)
- Organic Acids (formate, lactate, acetate, proprionate)
- Molecular Hydrogen by Reduction Gas Analysis

#### • XDD is not a certified analytical laboratory

- Samples sent to a certified laboratory for analysis, if required (project specific)





## **Why Conduct Treatability Studies?**

- Certainty of success / appropriate remedial design
  - Remedial events are expensive!
    - Treatability studies typically cost less than 1/10<sup>th</sup> of field applications
  - Select right site-specific technology
    - Determine failure mechanisms e.g., ISCO
      - Oxidant selection
      - Adverse reactions between oxidant and soil / groundwater
    - Determine field design parameters e.g., Bio
      - Need food (electron donor), nutrients, electron acceptor, correct bacteria?
      - Correct geochemistry?
    - Secondary effects (e.g., metals mobilization, unwanted by-products)
  - Determine correct amount of reagents applied in field
    - Cost savings
      - "over dosing" less likely
      - "under dosing" avoided, which can often result in apparent "failure" and subsequent mobilization events





### **Case Study 1: Oxidant Stability Issue**

- Catalyzed hydrogen peroxide (CHP) selected by USACE
- Treatment of chlorobenzenes in weathered bedrock and soil
- Bench tested CHP and persulfate to verify feasibility
  - CHP worked very well in bench testing....but short half-life
  - Activated persulfate worked well, and more stable...
  - Recognized advantages of persulfate system, but.....
- Required to conduct side by side pilot tests to prove:
  - Confirmed CHP failure (minimal effective ROI/instability)
  - Persulfate successful due to enhanced stability/contact
- Persulfate was applied successfully full-scale
- Saved \$100,000's on a failed application.

#### **Northeast Superfund Site**







## **Case Study 2: Navy Site**

- Evaluated several oxidation and reduction technologies for treatment of carbon tetrachloride
- Technologies eliminated due to failure mechanisms
  - Some formed by-products/recalcitrant to further reduction (e.g., chloroform)
- Determined right approach and dosage alkaline activated persulfate
- Applied successfully at pilot and full-scale





### **State of the Practice vs. State of the Art**

Complex Remediation Concepts are Being Packaged in Easy to Use Products Still Need to Apply With Care



Lower certainty of succesUltimately higher cost?

•

• Ultimately lower cost?



#### **You Needed This:**





#### **But What You Got Was....**





### **Feasibility and Treatability Studies**

- "State of the Practice" is often skipping remedial design steps
  - -Technical evaluation
    - Need expertise in design and implementation
  - -Treatability evaluations (as applicable)
    - Confirm dosing ranges
    - Identify interferences
  - -Field scale pilot testing (as applicable)



Not "Research" These are Design Tools

Steps are Critical for Accurate Cost and Performance Assessment



### **Common State of the Practice**

#### Remedial design using dosing spreadsheets?

- Usually a minimum dosing/application recommended
- Good start...provides "Cost-Effective" starting point

#### Must account for sensitive design parameters (not typically in RI):

- TOD, SOD, etc.
- COD, BOD, abiotic reactions, etc. (interferences)
- Interferences/scavengers, distribution, etc.

#### Very site-specific

- Additional evaluation often recommended by the vendors
- ….and often ignored….

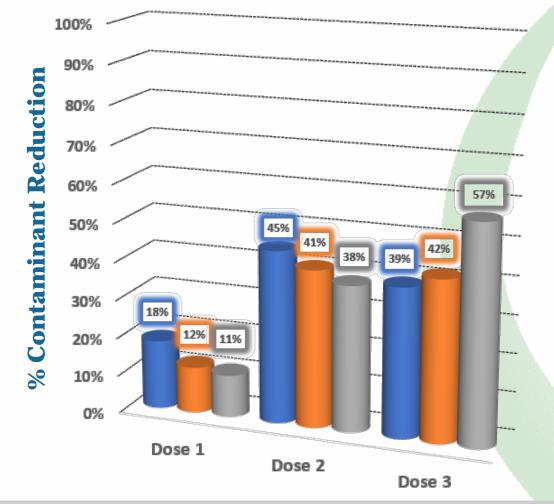
| Å. | A                                                  | В                                                                                   | С                     | D                       | E                           |      |  |
|----|----------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------|-------------------------|-----------------------------|------|--|
|    | OXIDANT/REAGENT                                    | VOLUME CALCULATIONS - This s                                                        | heet takes the soil ( | groundwater volume      | es and contaminant mass es  | stin |  |
|    | Site:                                              | <enter name="" site=""></enter>                                                     |                       |                         |                             |      |  |
|    | Revision Date:                                     | <enter data=""></enter>                                                             |                       |                         |                             |      |  |
|    |                                                    |                                                                                     |                       |                         |                             |      |  |
|    |                                                    | Eff. Pore Vol. (Gal)<br>(from 'Site Info" Tab) =                                    |                       |                         |                             |      |  |
|    |                                                    | Soil Mass (LBs)<br>(from 'Site Info" Tab) =                                         |                       |                         |                             |      |  |
|    |                                                    |                                                                                     |                       |                         |                             |      |  |
|    |                                                    |                                                                                     | Peroxide (CHP         | ) Injection Volume Es   | timates - Requirement for C | or   |  |
| 0  | Contaminant Demand (LBs H2O2) (from "Ox_Mass" Tab) |                                                                                     |                       |                         |                             |      |  |
| 1  | Stock Peroxide Sol                                 | 27% Stock Soln.                                                                     |                       |                         |                             |      |  |
| 2  | Peroxide Mass                                      | 14,158                                                                              |                       |                         |                             |      |  |
| 3  | Peroxide Stock                                     | 1,542                                                                               |                       |                         |                             |      |  |
| 4  |                                                    | [                                                                                   | Dil                   |                         |                             |      |  |
| 5  | Dilution Water Requ                                | 27% Stock Soln.                                                                     |                       |                         |                             |      |  |
| 6  | Dilution water Requ                                | 4.84                                                                                |                       |                         |                             |      |  |
| 7  |                                                    | 7,465                                                                               |                       |                         |                             |      |  |
| 3  | Total Diluted Perox                                | 9,007                                                                               |                       |                         |                             |      |  |
| 9  | Injection Pore Volu                                | mes Req'd to Emplace Oxidant Ma                                                     | ass For Contaminan    | t Demand <sup>[1]</sup> | 0.15                        |      |  |
| D  | Citric Acid, Monohy                                | drate (LBs C <sub>6</sub> H <sub>8</sub> O <sub>7</sub> *H <sub>2</sub> O) Molar Co | oncentration (mM)>>>  | 100                     | 1,580                       |      |  |
| 1  |                                                    | Straight Pore Volume                                                                | Dosing Calculation    | - Assumes Full Pore \   | olume at Desired Field Cor  | nce  |  |
| 2  |                                                    |                                                                                     |                       |                         | 27% Stock Soln.             |      |  |
| 3  | Total Peroxide Volu                                | 1,542                                                                               |                       |                         |                             |      |  |
| 4  | Total Dilution Water                               | 28,754                                                                              |                       |                         |                             |      |  |
| 5  | Total Injection Volu                               | 30,296                                                                              |                       |                         |                             |      |  |
| 5  | Injection Pore Volu                                | 0.5                                                                                 |                       |                         |                             |      |  |
| 7  | Required Oxidant C                                 | 1.51%                                                                               |                       |                         |                             |      |  |
| 8  | Citric Acid, Monohy                                | drate (LBs C <sub>6</sub> H <sub>8</sub> O <sub>7</sub> *H <sub>2</sub> O) Molar Co | oncentration (mM)>>>  | 100                     | 5,314                       |      |  |



#### **Case Study 3: Oxygen Release Compound Mass Loading**

### Superfund site:

- Multiple source/plume with chlorinated solvents and petroleum hydrocarbons


- Comparison of oxygen release products for petroleum plume
  - Evaluated three oxygen release compounds plus controls
  - Requested dosing recommendations from each product vendor to hit goals
  - Tested three products at the highest recommended dosage of any product\*

\* Some of above vendors recommended treatability testing to validate dosage assumptions



#### **Case Study 3: Oxygen Release Compound Performance**

Vendor Design Estimates (objective >90% Reduction with Single Dose)



All Products Failed, Even After <u>3 Applications</u> at the Maximum Dose Recommendation



### **<u>A Little More About the Details</u>**



## **Typical Treatability Test Set-up**

- Controls
  - Bio: killed biological control
  - ISCO: no oxidant (site media only)
- Duplicate or triplicate reactors
- Test design groundwater to soil ratio to approximate field conditions (low pore volumes of reagents added)
- Testing of multiple technologies
  - Screening tests for emerging contaminants e.g., 1,4 dioxane or PFC's
  - Various oxidants to determine potential failure mechanisms e.g., CHP stability
- Non-target demand requirements
  - Test range in oxidant / oxygen concentrations likely for field application





#### Bench Scale Testing: Duration, Media Requirements, Waste Handling, Costs

- Test Duration
  - ISCO: 2 days to 8 weeks
  - Bio: 2 to 6 months
- Media Requirements
  - Soil: 2 to 30 pounds
  - Groundwater: 1 to 20 liters
  - From area of interest 🙂
- Waste Handling

- Completions #4 M-Cosh IpH Co. Phr
- Disposal in accordance with licensed waste facility
- Small Quantity Generator status
- Costs
  - \$2,000 to \$50,000 or greater (function of scope and sample numbers)



## **Case Study 4: Ex Situ Advanced Oxidation**

- Landfill leachate and groundwater extraction system (50-100 gpm)
- 1,4-dioxane up to 322  $\mu$ g/L (has attenuated over time)
- Water currently treated using powdered activated carbon/sand filtration
- Advanced Oxidation Process (AOP) being evaluated to address 1,4-dioxane that is not treated by PAC / filtration
- Objective to treat 1,4-dioxane to regulatory standard while maintaining by-products within regulatory standard
  - Complication: Bromide up to 1,300  $\mu g/L$



## **AOP Process**

- Reaction between H<sub>2</sub>O<sub>2</sub> and O<sub>3</sub> produces hydroxyl free radical (•OH) – proven effective on 1,4-dioxane
- Bromate (BrO<sub>3</sub><sup>-</sup>) is a common disinfection byproduct
  - Formed during common water treatment process (e.g., chlorination, direct ozonation, AOP, etc.)
  - Naturally occurring bromide ions (Br<sup>-</sup>) in the raw ground water/surface water source is the pre-curser to bromate formation
  - MCL for bromate is 10  $\mu g/L$  in drinking water



## **1,4-Dioxane Destruction Results**

| Test Compute                                   |                                                           |                               |                   |                            |                               |                   |
|------------------------------------------------|-----------------------------------------------------------|-------------------------------|-------------------|----------------------------|-------------------------------|-------------------|
| Test Scenario                                  | Impact on 1,4-Dioxane                                     |                               | Impact on Bromate |                            | nate                          |                   |
| High Spike, 240 μg/L 1,4-dioxane               | <b>O</b> <sub>3</sub>                                     | H <sub>2</sub> O <sub>2</sub> | Final 1,4-        | <b>O</b> <sub>3</sub>      | H <sub>2</sub> O <sub>2</sub> | Final             |
| O <sub>3</sub> Dose = 5, 10, 13, 20 mg/L       | (mg/L)                                                    | (mg/L)                        | dioxane<br>(µg/L) | (mg/L)                     | (mg/L)                        | Bromate<br>(µg/L) |
| $H_2O_2:O_3$ Molar Ratio = 1.0 (all scenarios) | 5                                                         | 3.6                           | 48                | 5                          | 3.6                           | 64                |
|                                                | 10                                                        | 7.1                           | 6.6               | 10                         | 7.1                           | 190               |
| 7 injection nozzles except the 20              |                                                           |                               |                   |                            |                               |                   |
| mg/L ozone dose which used 9<br>nozzles.       | 13                                                        | 9.2                           | 1                 | 13                         | 9.2                           | 290               |
|                                                | 20                                                        | 14.2                          | 1                 | 20                         | 14.2                          | 430               |
|                                                | Result: 1,4-dioxane                                       |                               |                   | Result: Bromate conc.      |                               |                   |
|                                                | destruction is more effective as ozone dose is increased. |                               |                   | increased significantly as |                               |                   |
|                                                |                                                           |                               |                   | ozone dose increased.      |                               |                   |

<u>Conclusions</u>: Hydrogen peroxide/ozone molar ratio requires optimization to reduce bromate formation. Also, likely to require more nozzle injection points to reduce bromate while achieving desired 1,4-dioxane destruction (7 to 9 nozzles used in Round 1, increased to 20 to 30 in Round 2).



### **Case Study 5: Thermal Enhancement**

**Question was: Is thermal enhancement beneficial / cost effective?** 



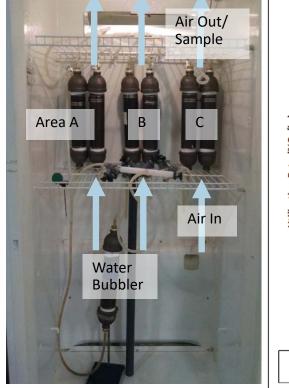
### **Site History (CHA)**

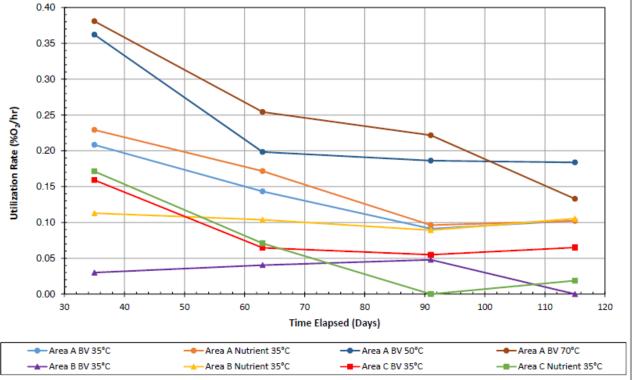
- Manufacturing operations: approximately 1910 to 1997
- 1994/1995: RI/FS
- 2004: All operations cease, buildings razed
- Low permeability layer that varies in thickness and depth across the Site
- VOC and SVOC impacts
- Aggressive remediation schedule





## **Overview: Questions to Address**


- What temperature is needed for site remediation using thermally enhanced soil vapor extraction?
  - Flow-through column experiments
  - Three soils: Test Areas A, B, and C
  - Three temperatures: 35 °C, 50 °C, 70 °C
- To what extent does bioventing assist in site remediation?
  - Flow-through column experiments
  - Transition several columns to bioventing phase through decreasing flow rates and measuring oxygen utilization with time
  - Add nutrients to half of the conditions to determine if needed




## **Lab: TSVE/Bioventing**

#### 35 °C Incubator

#### **Oxygen Utilization During Bioventing**





#### Notes:

%O2/hr = percent oxygen per hour; BV = bioventing; °C = degrees Celsius



### **Primary Treatability Observations**

- Higher impacted soils were very tight / silts
  - Supported additional site permeability variation testing, and 3-D modeling in SVE design
- The majority of the treatment occurred during the bioventing phase
  - There was high oxygen utilization in the impacted columns and growth in the biological population
  - Oxygen utilization decreased with time due to dwindling contaminant source (electron donor)
- Nutrient addition had limited additional benefit
- Increased temperature accelerated contaminant reductions
  - Contaminant transformation rates not significantly greater for 50  $^\circ C$  and 70  $^\circ C$  columns



### **System Operation**

- Over initial 8 months of operation mass of VOCs and SVOCs decreased by 58% and 73%, respectively
  - Calculated from 2007 and 2017 samples

|             | VOC<br>(lb) | SVOC<br>(lb) | Total<br>(lb) |
|-------------|-------------|--------------|---------------|
| 2007        | 39,500      | 2,100        | 41,600        |
| 2017        | 16,600      | 550          | 17,150        |
| % Reduction | 58%         | 73%          | 59%           |

- Approximately 86% of the mass reduction occurred via biodegradation (21,080 lb.)
  - Validated through oxygen utilization / COD measurements
- After 12 months operation evaluation of site closure ongoing
  - 90% of system shutdown approved by regulatory agency



### **Case Study 6: Enhanced Bioremediation, ME**

Chlorinated Solvents in Fractured Rock

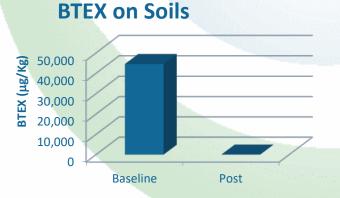
- Laboratory treatability study determined:
  - Limited food / electron donor
  - Limited nutrients
  - No appropriate bacteria
  - pH not ideal
- Adverse site conditions
  - Fractured bedrock
  - Ensure metals mobilization would not be an issue
  - Prior to treatment hot spot area required pump and treat
- Full-scale applied using pull-push approach adding treatability determined reagents and dosage
  - two applications over 12 month period
- Remedy successful: the pump and treat system evaluation permitted shutdown





#### Case Study 7: In Situ New York, NY Petroleum Hydrocarbons Treatment with ISCO

One shot deal


#### Treatability Study

- Tested multiple oxidants
- Alkaline activated persulfate selected
- Oxidant loading determined

#### Logistical Issues

- Tight schedule: complete in 2 weeks, before building slab construction
- Chemical compatibility with construction materials
- Space limitations
- Working around construction activities
- Maintain traffic accessibility
- Six days of chemical injection
  - Design based on bench testing results
- Site closed by NYSDEC
  - 92 to 95 % groundwater concentration reduction
  - > 99 % reduction of BTEX, DRO + GRO on soils







### **Case Study 8: Ex Situ Process**

#### **Iron and TOC/COD Removal**

- Large Industrial Site/Capped with P&T System
- High iron and TOC/COD
- Performed treatability and field support for optimization of various pretreatment processes
  - Pre-GAC treatment included:
    - Coagulation/flocculation and settling
    - pH adjustment
    - TOC/COD removal via modified zeolite/selectivity analysis
- Pretreatment steps save client \$56k/year

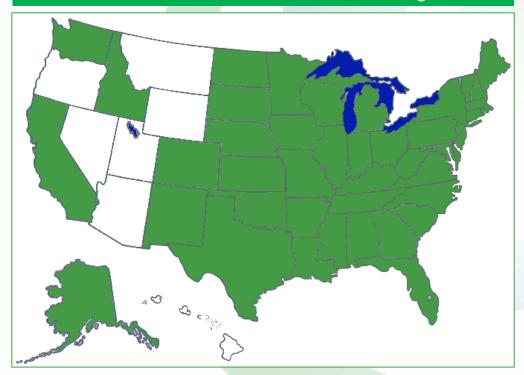






#### **Presented by:**

Laurel Crawford Lcrawford@xdd-llc.com


Mike Marley Marley@xdd-llc.com

1-800-486-3575

www.xdd-llc.com

• in :XDD Environmental

#### States in which we had Projects



