

Do it Right, Do it once

Avoiding the Epic Fail – PFAS Treatability Testing

Presented by

Michael Marley

October 17, 2018

Outline

- **Q**Role of treatability studies in remedial design
- **Treatability case studies**
- **UWhy PFAS treatability Studies?**
- **□**PFAS treatability case studies
- **Collaborative treatability testing research underway**
- **D**Approximate study costs and test durations

Why Conduct Treatability Studies?

You Needed This:

Certainty of success

□Select right site-specific technology

- Determine failure mechanisms
- Adverse reactions / byproducts

Determine correct amount of reagents to be applied

But What You Got Was....

Don't Worry, I Got This!

Treatability Studies - Design

Example 1 – Bioremediation SOP¹ vs. SOA²

Superfund Site SC: Mixed source / plume with chlorinated solvents and petroleum hydrocarbons

Aerobic Biodegradation: Comparison of oxygen release products for petroleum plume

- **D**Evaluated oxygen release compounds on the market
- Provided vendors with site specific data and requested recommended dosing
 of product = SOP
- Based on responses tested all products at MAXIMUM dosage recommended by any of the vendors*
 - * = Some vendors recommended treatability study be performed
 - 1 = State of practice
 - 2 = State of art

Example 1: Oxygen Release Compound Performance

Vendor Design Estimates (objective >90% Reduction with Single Dose)

All Products Failed, Even After <u>3 Applications</u> at the SOP Maximum Dose Recommendation – Treatability (SOA) Identified Dose for Certainty of Success

<u>Example 2 – Peer Review – Diagnosis of</u> <u>ISCO Failure, by Others</u>

- □SOP Treatability Design using Peroxide Flawed was "considered a success" as TCE was ND in test reactor
 - Half-life < 5hrs (from data analysis of peroxide concentration and gas generated) –not evaluated or reported
 - <5hrs half-life inadequate for oxidant distribution in the field essentially gas generation outside well location, oxygenating the aquifer and diluting / stripping TCE
 - Loss of TCE in treatability can be accounted for by TCE vapor concentration measured in off-gas, and theoretical gas volume generated / released from mass of peroxide added
 - Gas generation was not measured / reported

≻21 pore volumes of reagent solution used in treatability tests

- Common lab issue
- Not representative of field applications

Why PFAS Treatability Studies?

□Treatability studies are perhaps even more important for PFAS than for other contaminants because:

- ➤Target PFAS and remedial goals are changing fast
- Complications posed by PFAS precursors
- ➢Part per trillion cleanup levels
- ➢Potential requirement for remediation treatment trains.
- ≻Analytical limitations
- **Description** Each potential remedial technology requires treatability
 - ≻Effectiveness for PFAS present
 - Byproduct formation
 - Costing for application

Analytical Challenges

- **Low detection limits required**
- **Cross-contamination**
- Deciding which analytes to quantify of the many that exist
- □Standards not available for many analytes
- **U**Widely varying chemical/physical characteristics of PFAS
- Fast-changing regulatory requirements and analytical methods

Common PFAS Remedial Technologies In Use

Adsorption/Ion Exchange

(most commonplace, non-destructive, produces concentrated PFAS waste)

Carbon-based systems

- > Ex-situ activated carbon systems (GAC or PAC)
- Biochar (biomass and charcoal) less consistent and kinetically slower?
- In-situ injectable carbon-based systems * gaining interest *
- Competition with organics for sorptive sites may require pretreatment

Synthetics resins – gaining traction due to capacity/effectiveness

- Combination IX and adsorption
- > Faster kinetics and higher capacities = smaller reactor size
- Higher product cost requires site specific cost-benefit analysis
- > Ongoing work on single use IX and shorter chain PFAS sorption

Treatability studies are needed

Removal of Various PFAS using Virgin Filtrasorb

© Calgon Carbon Corporation, 2017

Public water supply well (in NH) side-by-side pilot: Sorbix LC1 resin vs. Calgon F400 GAC

ect₂

Removal comparison – Total PFAS

Short chain removal comparison - PFBA

Filtration / Separation (Also produces concentrated PFAS waste)

Nano-Filtration (NF)

- PFAS have molecular weight cutoff (MWCO) of approximately 300 500 Daltons
 - >90% effective most PFAS
- Ultra and micro-filtration low effectiveness
 Reverse Osmosis
 - ➢ Polymers used have spaces on the order of 100 − 200 Daltons
 - ➤ >90% effective most PFAS

Destructive Technologies

Oxidative / reductive technologies – redox manipulation

- ➤Can treat many of the co-contaminants
- Common theme is high energy and / or diverse reactive species needed and reaction time (e.g., electrochemical, plasma, photolysis)
- ≻Byproducts may be a concern
 - Formation of lower C Per's with higher mobility
 - Chloride to perchlorate
 - Bromide to bromate
- ➢PFAS range of applicability may be limited
 - Showing more promise for carboxylic's (PFOA) than sulfonates (PFOS)
- Treatment to ppt levels may require treatment train / polishing

Treatability studies are needed

Pretreatment of Precursors

Fighting the Unbeatable Foe: Remediation of Groundwater Contaminated by PFASs with In Situ Chemical Oxidation

Dr. David Sedlak

University of California, Berkeley

PFOA in Deionized Water

Time, h

Conditions:

 $[S_2O_8^{2-}]_0 = 50 \text{ mM},$ [PFOA]₀ = 4 µM unbuffered (pH < 3) H₂O, T = 85° C

Bruton and Sedlak, in review

SERDP & ESTCP Webinar Series (#59)

In-House Bench Scale Treatability Testing on Groundwater (from Virginia FTA site)

PFAS Contaminated Site GW Spiked with Additional PFOS and PFOA (6 hrs. treatment)				
Specific PFAS	Initial concentration	Intermediate (3 hrs.) concentration	Final (6 hrs.) Concentration	Net Change
PFOS: (8 carbon sulfonate)	138 ppb	25 ppb	3 ppb	95% decrease
PFOA: (8 carbon acid)	33 ppb	22 ppb	6 ppb	97% decrease
PFHpS: (7 carbon sulfonate)	7 ppb	4 ppb	0.4 ppb	97% decrease
PFHpA: (7 carbon acid)	6 ppb	< 0.4 ppb	< 0.4 ppb	67% decrease
PFHxA: (6 carbon acid)	15 ppb	43 ppb	30 ppb	net increase
PFHxS: (6 carbon sulfonate)	68 ppb	99 ppb	14 ppb	79% decrease
PFPeA: (5 carbon acid)	11 ppb	< 2 ppb	< 2 ppb	91% decrease
PFBS: (4 carbon sulfonate)	9 ppb	14 ppb	10 ppb	no change
PFBA: (4 carbon acid)	3 ppb	6 ppb	5 ppb	small increase

In-House Bench Scale Lab Results

Actual AFFF Site Contaminated Groundwater -High Undetected PFAS showed 750% Fluoride Recovery

ONGOING RESEARCH: PFAS

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

Adsorption / Ion Exchange Studies

Destruction (Electrochemical [EC]) Studies

<u>Bench Scale Testing:</u> <u>Duration, Media Requirements, Waste Handling, Costs</u>

Test Duration

- ➢ ISCO: 2 days to 8 weeks
- Bio: 2 to 6 months
- Media Requirements
 - ➢ Soil: 2 to 30 pounds
 - Groundwater: 1 to 20 liters

Costs

> \$2,000 to \$50,000 or greater (function of scope and sample numbers)

Presented by:

Mike Marley Marley@xdd-llc.com

1-800-486-3575

www.xdd-llc.com

States in which we had Projects

