- The webinar will start promptly at 12:00 EST There will be a Q&A session during the last 10
 15 minutes of the webinar
- All participants will be on mute
- One day after the webinar has been concluded an email will be sent that will allow you to download a copy of the webinar

- The webinar is being recorded and will also be made available via email
- Please use the "Chat" (see the
 icon to ask questions for the presenters.
 Questions will be answered at the end of the webinar. If any questions are missed due to a lack of time, we will follow-up via email after the webinar.

Treatability Testing for Remedial Applications

Presented by

Laurel Crawford Treatability Laboratory Manager

September 8, 2021

Who is XDD?

© Focused on remediation since early 1980's

- Solve difficult design problems
- Involved in early development of remediation technologies:
 - Soil vapor extraction (SVE)
 - Air (AS) and oxygen sparging / biosparging
 - In situ chemical oxidation (ISCO) and reduction (ISCR)
 - $\circ~$ Aerobic and anaerobic bioremediation
 - Thermally enhanced remediation
 - $\circ~$ Vapor intrusion mitigation
- Treatability testing for end-users, consultants, and contractors
- Integrated remedial strategies

Integrated Remedial Strategies

Do it right. Do it once.

Why Conduct Treatability Studies?

- Select right site-specific technology
 - Determine potential failure mechanisms e.g., ISCO
 - $\circ~$ Oxidant selection
 - $\circ\;$ Adverse reactions between oxidant and soil / groundwater
 - Determine field design parameters e.g., Bio
 - Need food (electron donor), nutrients, electron acceptor, correct bacteria?
 - Correct geochemistry?
 - Secondary effects (e.g., metals mobilization, unwanted by-products)
 - Site logistics (e.g., facility redevelopment, downgradient receptors)
- O Certainty of success / appropriate remedial design
 - Remedial events are expensive!
 - Treatability studies typically cost less than 1/10th of field applications
 - Scale-up to field implementation

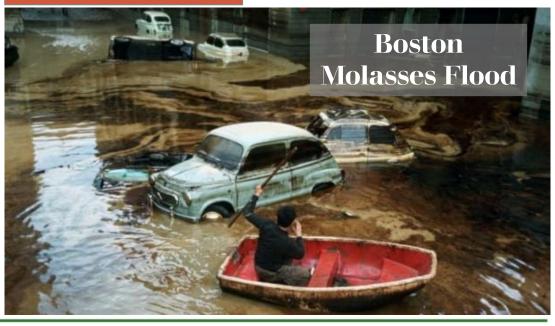
Cost Savings

Why Conduct Treatability Studies?

O Determine correct amount of reagents applied in field

• "under-dosing" avoided, which can often result in apparent "failure" and subsequent mobilization events

But What You Got Was...


Why Conduct Treatability Studies?

O Determine correct amount of reagents applied in field

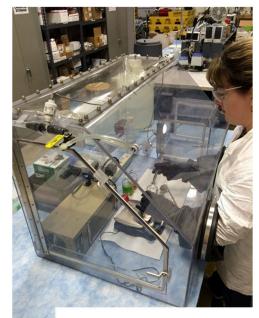
"over-dosing" less likely

But What You Got Was...

XDD Treatability Services

Ochemical Oxidation

- Catalyzed Hydrogen Peroxide
- Activated Persulfate
- Solid Phase Oxidants
- Permanganate
- Ozone

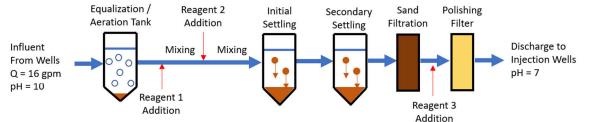

O Chemical Reduction

- Zero Valent Iron (ZVI)
- Metal Sulfides
- Mixed Reagents (e.g., EHC)

In Situ Stabilization / Solidification (ISS)

- Metals, VOCs, SVOCs
- Surfactant Enhanced Product Recovery

Sioremediation:


- Aerobic
- Anaerobic

O Thermal Enhancements

- SVE
- Bioremediation

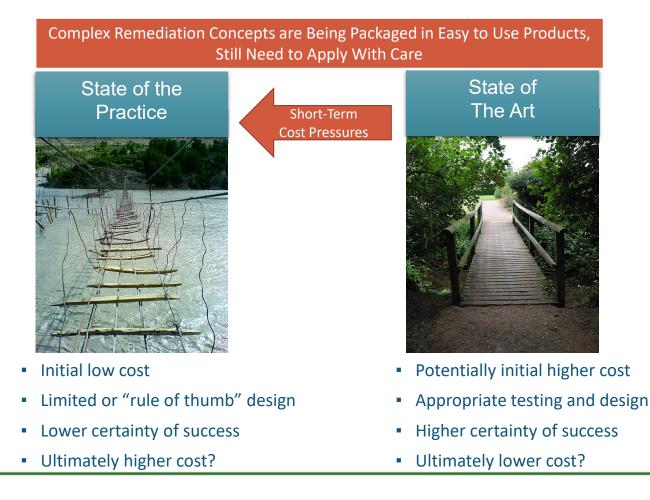
Combined Technologies

- ISS ISCO
- Treatment train approach

XDD Treatability Services

In-House analytical capabilities

- Geochemical parameters
- Volatile Organic Compounds
- Dissolved Gases
 - Methane, ethane, ethene
 - Acetylene
 - Oxygen, carbon dioxide


O Permitted to receive / test international soils

- Sesearch-funded testing
 - SERDP metals immobilization during ISCO
 - PFAS
- Customized testing

State of the Practice vs. State of the Art

Common State of the Practice

Semedial design steps often skipped

- Treatability / pilot testing
 - Determine site-specific design parameters (TOD)
 - Confirm dosing
 - Identify interferences (COD, BOD, abiotic reactions)
 - $\circ~$ Site geology / hydrogeology
 - $\circ~$ Heterogeneity in COCs, geology

O Remedial design using dosing spreadsheets?

- Usually minimum dosing / application recommended
- Good start...provides starting point
- Additional evaluation often recommended by vendors
-and often ignored....

Steps are Critical for Accurate Cost and Performance Assessment

1	A	В	С	D	E
1	OXIDANT/REAGENT	VOLUME CALCULATIONS - This	sheet takes the soil /	groundwater volum	es and contaminant mass estimat
2	Site:	<enter name="" site=""></enter>			
3	Revision Date:	<enter data=""></enter>			
4					
5					
6		Area 1		Eff. Pore Vol. (Gal) (from 'Site Info" Tab) =	
7		Soil Mass (LBs) (from 'Site Info" Tab) =			
8					

9	Peroxide (CHP) Injection Volume Estimates - Requirement for Contai								
10	Contaminant Demand (LBs H ₂ O ₂) (from "Ox_Mass" Tab)								
11	Stock Peroxide Solution Calculations:	27% Stock Soln.							
12	Peroxide Mass (LBs H ₂ O ₂)	14,158							
13	Peroxide Stock Soln. Volume (Gal)	1,542							
14		Dilutic							
15		27% Stock Soln.							
16	Dilution Water Required to Yield Field Strength (Gal)	4.84							
17		7,465							
18	Total Diluted Peroxide Volume (Gal) (total volumes differ slightly due to minor rounding error)	9,007							
19	Injection Pore Volumes Req'd to Emplace Oxidant Mass For Contaminant Demand [1]	0.15							
20	Citric Acid, Monohydrate (LBs C ₆ H ₈ O ₇ *H ₂ O) Molar Concentration (mM)>>> 100	1,580							
21	Straight Pore Volume Dosing Calculation - Assumes Full Pore	Volume at Desired Field Concent							
22		27% Stock Soln.							
23	Total Peroxide Volume (Gal) to Dose Desired Pore Volume (copied from Row 13 above)	1,542							
24	Total Dilution Water Volume (Gal) to Dose Desired Pore Volume	28,754							
25	Total Injection Volume (Gal) at Desired Field Concentration =	30,296							
26	Injection Pore Volumes Req'd to Emplace Oxidant Mass For Contaminant Demand	0.5							
27	Required Oxidant Concentration to Emplace Oxidant Mass For Contaminant Demand	1.51%							
28	Citric Acid, Monohydrate (LBs C ₆ H ₈ O ₇ *H ₂ O) Molar Concentration (mM)>>> 100	5,314							

"Testing is a

Design Tool.

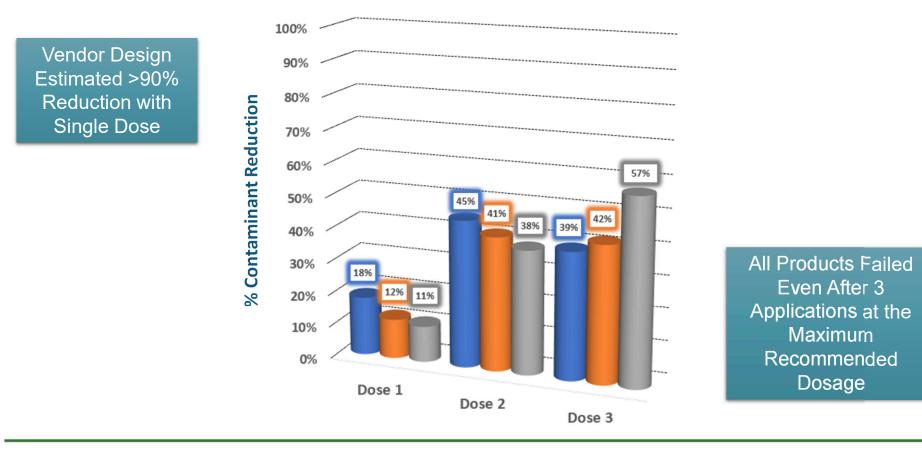
Not R&D"

Case Study 1: Oxygen Release Compound Mass Loading

Superfund site

- Multiple source/plume
- chlorinated solvents, petroleum hydrocarbons

© Comparison of oxygen release products

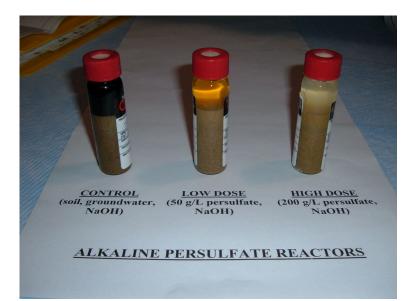

- Evaluated 3 oxygen release compounds
- Requested dosing recommendations from each product vendor to hit goals
- Tested 3 products at highest recommended dosage out of the 3 products*

* Some of above vendors recommended treatability testing to validate dosage assumptions

Case Study 1: Oxygen Release Compound Performance

A Little More About the Details

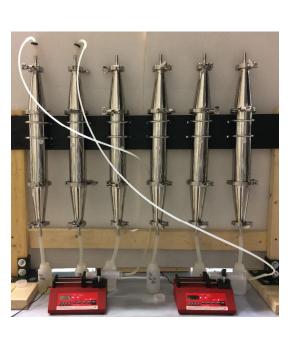
Treatability Test Details


Controls

- Bio: killed control
- ISCO: no oxidant (site media only)

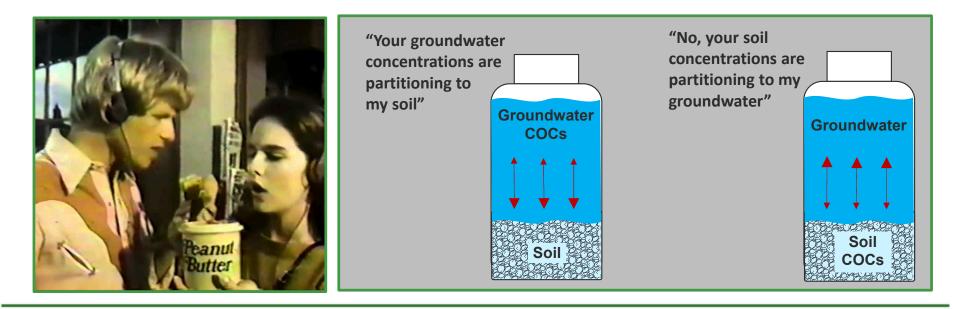
O Duplicate or triplicate reactors

- Test Duration
 - ISCO, ISCR, ISS: 2 days to 8 weeks
 - Bio: 2 to 6 months
- Media Requirements
 - Soil: 2 to 30 pounds
 - Groundwater: 1 to 20 liters
 - NAPL (if spiking necessary)
 - <u>From area of interest</u>
- October Costs
 - \$2,000 to \$50,000 or greater (function of scope, technology, number of samples, etc.)



Treatability Test Details

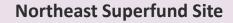
- O Phased approach / Multiple technologies
 - Screening tests for emerging contaminants (e.g., PFAS)
 - ZVI, Bio
 - Batch reactors determine approximate kinetics, dosage, product
 - $\circ~$ Columns select appropriate product to refine kinetics and dosage
 - ISCO
 - Phase I determine failure mechanisms
 - test multiple oxidants for TOD, pH buffering, stability
 - Phase II contaminant destruction evaluation
 - select best oxidant based on Phase I



- Itest to approximate field conditions!
 - Groundwater to soil ratio (typically 1 to 2 pore volumes of reagents)
 - Groundwater temperature
 - <u>Samples from area of interest and native condition</u>

Treatability Test Details

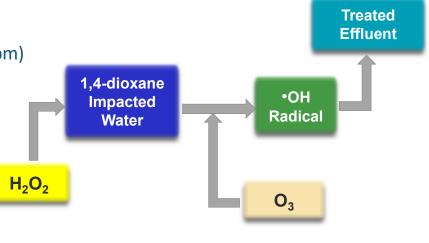
^(C) Incorporate / analyze both soil and groundwater


- Mass Balance
- Need to account for partitioning effects highly variable
 - Koc (soil sorption coefficient)
 - Foc site-specific (soil organic carbon fraction)

Case Study 2: Oxidant Stability Issue

- Chlorobenzenes in weathered bedrock and soil
- © Catalyzed hydrogen peroxide (CHP) selected by USACE
- Sench tested CHP and persulfate to verify feasibility
 - CHP worked well....but short half-life
 - Activated persulfate worked well, and more stable...
 - Recognized advantages of persulfate system, but.....
- O Required to conduct side by side pilot tests to prove:
 - CHP failure (minimal effective ROI / instability)
 - Persulfate successful due to enhanced stability / contact
- O Persulfate applied successfully full-scale
- Saved \$100,000's on a failed application

Case Study 3: Ex Situ Advanced Oxidation

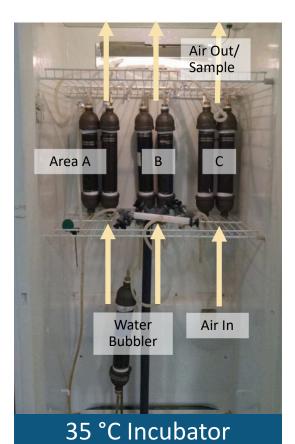

Candfill site w/ suite of COCs

- Existing leachate / groundwater extraction system (50-100 gpm)
- Powdered activated carbon (PAC) / sand filtration
- 1,4-dioxane up to 322 μg/L not treated by PAC / filtration
- Advanced Oxidation Process (AOP)
 - H₂O₂ plus O₃ produces hydroxyl free radical (•OH)
 o proven effective on emerging contaminants (e.g., 1,4-dioxane)
 - Bench evaluated various concentrations of H₂O₂ and O₃

© Goal: treat 1,4-dioxane to criteria while maintaining by-products within regulatory standard

- Complication: Bromate (BrO₃⁻) is a common disinfection by-product formed during water treatment processes (e.g., chlorination, direct ozonation, AOP, etc.)
- Bromide at site (up to 1,300 μg/L) pre-curser to bromate formation
- MCL for bromate 10 μg/L in drinking water

Case Study 3: AOP Effects on 1,4-Dioxane and Bromate


240 μg/L 1,4-dioxane baseline							
Test ScenariosH2O2O3(mg/L)(mg/L)		Impact on 1,4-Dioxane	Impact on Bromate				
		Final 1,4-dioxane (μg/L)	Final Bromate (μg/L)				
3.6	5	48	64				
7.1	10	6.6	190				
9.2	13	1	290				
14.2 20		1	430				
H ₂ O ₂ :O ₃ Mola	ır Ratio = 1	1,4-dioxane decreased as O ₃ dose increased	Bromate increased as O ₃ dose increased				
$\frac{\text{Conclusions:}}{\text{H}_2\text{O}_2:\text{O}_3 \text{ molar ratio required optimization to reduce bromate formation.}}$							

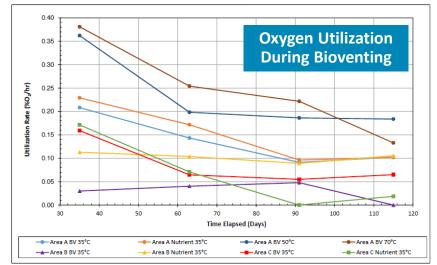
Case Study 4: Thermal SVE / BV - Bench

Sormer manufacturing facility

- VOCs, SVOCs
- Heterogeneous, low permeability soils
- Groundwater treatment system
- ^(C) Treatability to evaluate thermally enhanced SVE / bioventing (BV)
 - Columns
 - Three soils: Test Areas A, B, and C
 - Three temperatures: 35 °C, 50 °C, 70 °C
 - Transition several columns to bioventing phase
 - $\circ~$ decreased flow rates
 - $\circ~$ measured oxygen utilization
 - Nutrients added to select test conditions

Case Study 4: Thermal SVE / BV - Bench & Field

Majority of treatment during bioventing phase


- Total COC reductions from 76% to 99%
- High oxygen utilization in the more impacted columns
- Oxygen utilization decreased due to dwindling contaminant source (electron donor)
- Biological population increase
- Nutrient addition had limited additional benefit
- Increased temperature accelerated contaminant reductions
 - > 35 °C limited additional benefit (50 °C and 70 °C columns)

Full-Scale	VOCs (lb)	SVOCs (lb)	Total (lb)		
Baseline	39,500	2,100	41,600		
8-Month Operation	16,600	550	17,150		
% Reduction	58%	73%	59%		

Full-scale

- Heterogeneous soils incorporated into SVE design
- ~86% mass reduction via biodegradation (21,080 lbs)
 - Validated through oxygen utilization / COD measurements
- I2 months post-operation
 - 90% of system shut down, site closure pending

Case Study 5: Phased ZVI Treatability

Sormer landfill

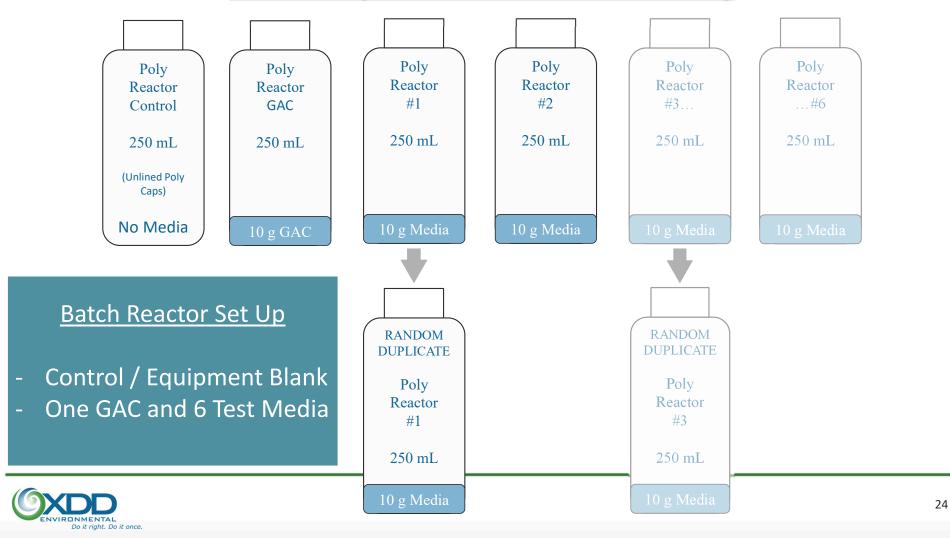
- CVOCs in groundwater in weathered bedrock
- Goal 80% reduction in total COCs
- PRB proposed remedy using ZVI

Sench testing ZVI dose/ product

- Batch Phase I
 - 3 products tested from Hepure
 - Ferox Flow
 - Ferox Target
 - Ferox Plus Emulsified [eZVI])
 - \circ 2 dosages each product (1% and 5%)
- Columns Phase II
 - Confirm ZVI product(s) / dose from Phase I
 - Tested Ferox Flow and Target at 5%
 - 4-ft and 8-ft treatment zone simulations (i.e., column length / PRB width)

Fluorescein tracer to confirm velocity (2 ft/day)

Results


- Batch Phase I
 - $\circ~$ 80% reduction goal met
 - Flow by day 25
 - Target by day 13
- Columns Phase II
 - Flow up to 66% reduction
 - Target 91% reduction

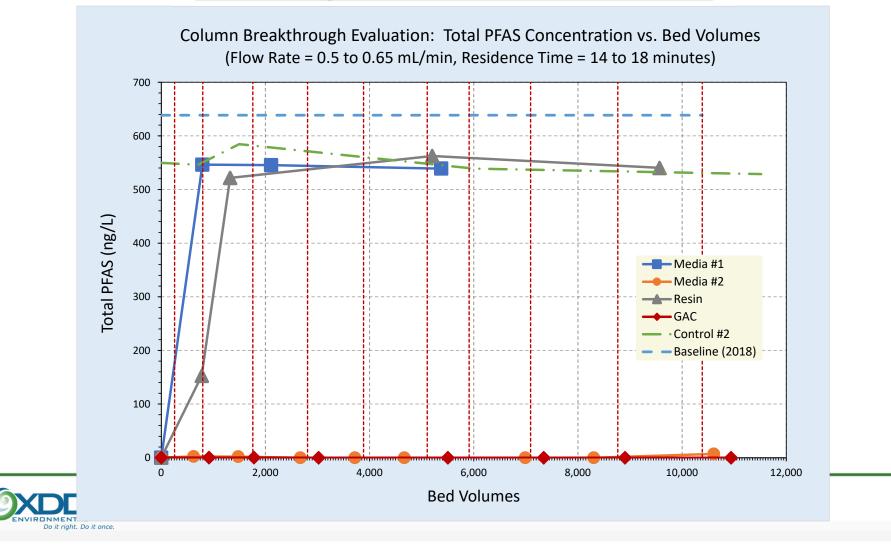
Conclusions

- Minimum PRB width of 4 ft
- Cost-benefit analysis recommended
 - Wider trench vs product costs
 - Ferox Flow lower \$/lb, greater longevity, slower kinetics
 - Ferox Target higher \$/lb & kinetics

Case Study 6: Phased PFAS Treatability

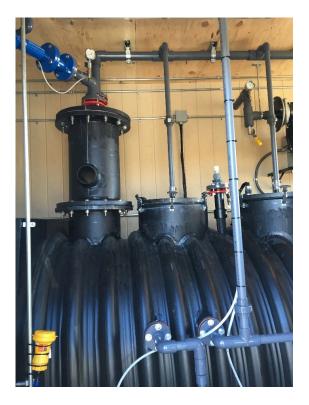

Compound	Carbon Length	Average Baseline	Control	Synthetic Media	Natural Media	Pre- Treatment	Commercial Resin	Organic Modified #1A	Organic Modified #1B	GAC	Surfactant Modified
PFOA	8	534	556	504	483	82	329	34	450	40	ND <1.9
PFOS	0	6	5	4	3	ND <2	ND <2	ND <1.9	15	ND <2	ND <1.9
PFHpA	- 7 - N	56	58	53	52	51	46	15	54	3	ND <1.9
PFHpS		ND<2	ND <2	ND <2	ND <1.9	ND <2	ND <2	ND <1.9	0	ND <2	ND <1.9
PFHxA	6 -	17	18	16	16	17	17	12	18	ND <2	ND <1.9
PFHxS		4	5	2	4	4	2	ND <1.9	3	ND <2	ND <1.9
PFPeA	5 7 5 ND<2	7	7	7	7	7	7	7	7	ND <2	ND <1.9
PFPeS		ND<2	ND <2	ND <2	ND <1.9	ND <2	ND <2	ND <1.9	0	ND <2	ND <1.9
PFBA	4	4	4	4	4	4	4	ND <1.9	4	ND <2	ND <1.9
PFBS	4	3	3	3	3	3	3	3	3	ND <2	ND <1.9
Total Pl	-AS	630	656	593	572	498	408	71	557	45	ND <1.9
Reduction				9.6%	12.8%	24.1%	37.8%	89.2%	11.5%	93.1%	100%

Case Study 6: PFAS Batch Test Results



Selected for Column Flushing Study

Case Study 6: PFAS Column Apparatus



Case Study 6: PFAS Column Test Results

Case Study 7: Ex Situ TOD/COD Removal

- Large industrial site
 - Surface cap with P&T system
 - High iron, TOC / COD
- ^(C) Treatability and field support for pretreatment processes
 - Pre-GAC treatment included:
 - $\circ~$ Coagulation / flocculation and settling
 - pH adjustment
 - $\circ~$ TOC / COD removal via modified sorbent
- O Pretreatment steps saved client \$56k/year

Case Study 8: Enhanced Bioremediation, ME

Site background

- Chlorinated solvents in fractured bedrock
- Metals mobilization a concern
- P&T for hot spot area

© Evaluated bioremediation in treatability study

- Limited food / electron donor
- Limited nutrients
- No appropriate bacteria
- pH not ideal

Sull-scale remedy

- Pull-push approach using treatability determined reagents and dosage
- Two applications over 12-month period

O Remedy successful: the P&T system evaluation permitted shutdown

Questions?

Presented by:

Laurel Crawford LCrawford@xdd-llc.com

1-800-486-3575

www.xdd-llc.com

Follow XDD:

in

- : @XDD_LLC
- : XDD Environmental

- Soil & Groundwater Remediation
- Specialized Water Treatment
- Customized Treatability Studies

