- The webinar will start promptly at 12:00 EST There will be a Q&A session during the last 10
   15 minutes of the webinar
- All participants will be on mute
- One day after the webinar has been concluded an email will be sent that will allow you to download a copy of the webinar

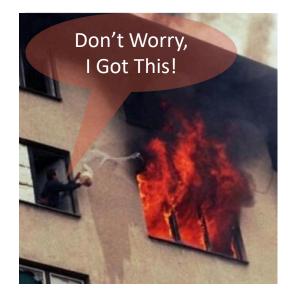
- The webinar is being recorded and will also be made available via email
- Please use the "Chat" (see the 
   icon to ask questions for the presenters.
   Questions will be answered at the end of the webinar. If any questions are missed due to a lack of time, we will follow-up via email after the webinar.



# ISCO State of the Art vs. State of the Practice

Michael Marley & Dennis Keane XDD Environmental

September 2, 2021


# **Pre-Design Considerations**

#### Proper Preparation Prevents Poor Performance – Charlie Batch

#### You Needed This:



#### But What You Got Was....





## **Pre-Design Engineering Components**

Step 1: Solid Conceptual Model

- Contaminant type
- Contaminant phase
- Location of contaminant
- Media properties
- Step 2: Oxidant selection
- Step 3: Oxidant dosage and performance
- Step 4: Pilot testing

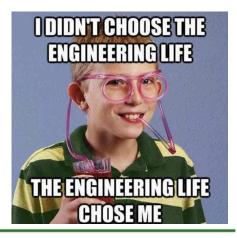
Setting expectations based upon the above information



# **Step 2: Oxidant Selection**

### Step 1 feeds into Step 2

- Nearby Structures? Off gassing may preclude peroxide-based chemistries.
- Lower permeability materials? Longer residence time required of oxidant.
- Chlorinated ethanes? Higher energy oxidant like alkaline activated persulfate.
- Contaminant type limits oxidant selection.
- Impacts primarily in the vadose zone? Ozone or mixing or permeability is low enough to retard oxidant migration.
- Significant quantities of DNAPL? Excavation, thermal, or "other" followed by ISCO polishing?




# Step 3: Oxidant Performance Simple as a Call to Tech. Support?

© Remedial design using dosing spreadsheets

© Usually a minimum dosing/application recommended

- Good start...provides "cost-effective" starting point
- <sup>(C)</sup> Must account for highly variable/sensitive design parameters:
  - TOD, SOD, etc.
  - Interferences/scavengers, distribution
- **Overy site-specific** 
  - Additional evaluation often recommended
  - by the vendors
  - ....but often ignored....



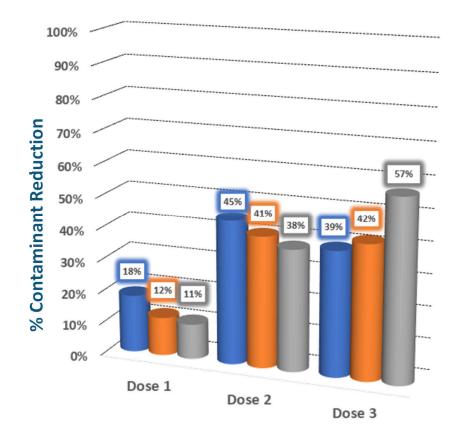


## **Oxygen Release Compound Mass Loading**

#### <sup>(C)</sup> Superfund site:

Multiple source/plume with chlorinated solvents and petroleum hydrocarbons

#### © Comparison of oxygen release products for petroleum plume


- Evaluated three oxygen release compounds plus controls
- Requested dosing recommendations from each product vendor to hit goals
- Tested three products at the highest recommended dosage of any product\*

\* Some of above vendors recommended treatability testing to validate dosage assumptions



## **Vendor Design Estimates**

(objective >90% Reduction with Single Dose)



#### **ENVIRENMENTAL** Do it right. Do it once.

#### All Recommended Dosing Levels Failed,

Even After <u>3 Applications</u> at the Maximum Dose Recommendation

# **Bench Testing Objectives**

© Calculate the total oxidant demand (TOD)

- Can vary by orders of magnitude
- Has a significant impact on effectiveness and cost

Obtermine the effectiveness (ability and kinetics) of an oxidant

- Oetermine catalyst requirements
- © Evaluate by-product formation
- O Analyze potential for metals mobilization

<u>Run treatability for scale-up to field implementation (see next example)</u>





## Example – ISCO Peer Review – Diagnosis of Failure by Others

© SOP Treatability Design using CHP Flawed

- Was "considered a success" as TCE was ND in test reactor
- Half-life (HL) < 5hrs</p>
- $\,\circ\,$  XDD data analysis of CHP concentration and gas generated HL not reported
- $\circ~$  Gas generation outside well location, oxygenating the aquifer and diluting / stripping TCE
- Loss of TCE in treatability:
- $\circ~$  TCE vapor concentration measured in off-gas, and
- Theoretical gas volume generated

## O 21 pore volumes of reagent solution used in treatability tests

- Common SOP issue
- Not representative of field applications
- XDD uses 1 to 2 PVs in treatability studies



## Example – ISCO Peer Review - Diagnosis of Failure, by Others

© Full-scale CHP Injection was performed 2016

- Injected ~12k gallons CHP
- Off-gassing / daylighting not highlighted in treatability reporting
- Concentrations of TCE in source area doubled
- Degradation ratios:
- $\circ~$  Treatability: 1136 grams of CHP / gram of TCE (very high)
- $\circ~$  Field: 248 approx. 5 times lower ratio
- $\circ~$  Treatability lab ratio, only 4 Kg of TCE would be removed

## **(5)** Key Issues

- Wrong Oxidant
- Wrong Dosing
- Expertise would have avoided failures







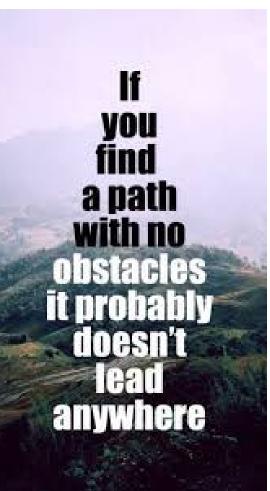


Eastern Surplus Superfund Site

# **Pilot Study Design**

## Why Pilot Test? Chemical vs. Physical

© Real World vs. Treatability Testing


Lab cannot fully emulate field conditions

## © Evaluate injection methods

Engineering aspects (pumping rates/pressures, etc.)

#### Control Reduce risk and increase certainty

- High-cost sites
- Elevated public scrutiny



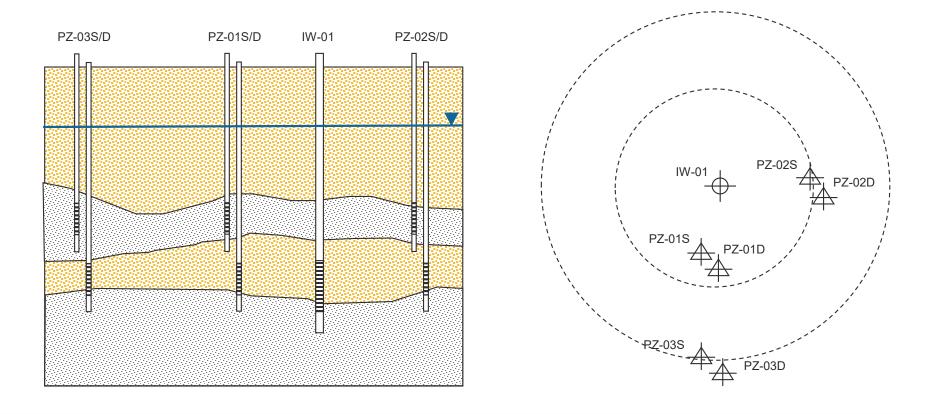


## **Pilot Test Objectives – What Data Do We Need?**

### Radius of influence (ROI)

© Flowrate and pressure

- Delivery rate > reaction rate = oxidant stability
- Confirm oxidant/activator loading
- © Confirm mass reduction
- See Assess matrix diffusion/penetration


### Identify other issues:

- Daylighting
- Preferential Pathways
- Unexpected reactions/interferences
- Rebound

Need Robust Monitoring Plan Confirm Oxidant Contact and Effectiveness Estimate How Many Applications Confirm Delivery Methods/Rates

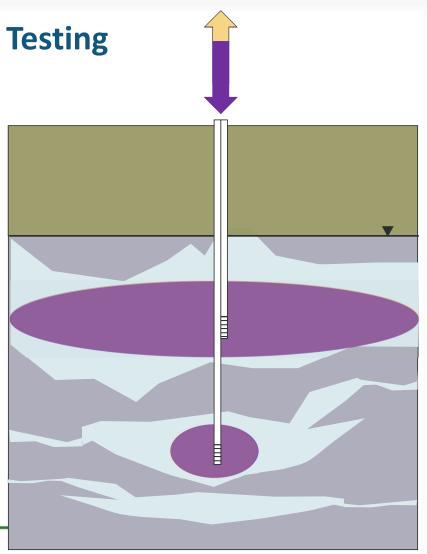


## **Pilot Test Design: Traditional Direct Injection Tests**





## **Pilot Test Design: Push-Pull & Pull-Push Testing**


Inject known volume of oxidant and "conservative" tracer

Stract and analyze change

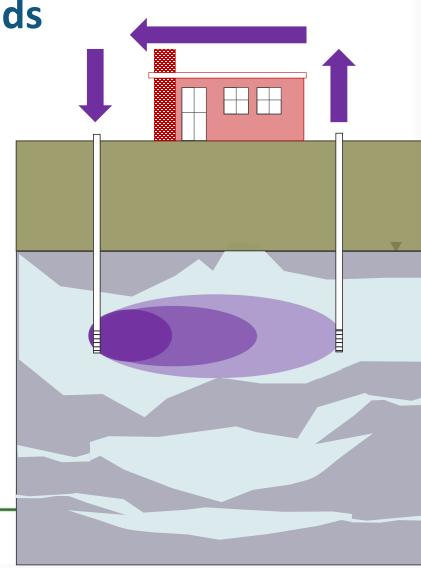
#### **Advantages**

- Short duration
- Use existing well
- Estimate of TOD
- Estimate of COC destruction

- Provides limited information on fullscale delivery method
- Generates groundwater that may require disposal or treatment



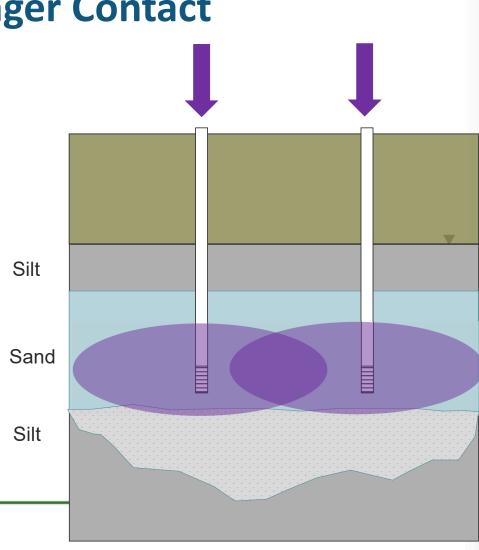



# **Recirculation Methods**

## **Closed Loop Recirculation**

What it does:

- Minimizes displacement of aqueous plume
- Allows transport of solution below obstructions
- Potentially enhance ROI/distribution within injection grid
- O Typical Applications:
  - Sites where mass of contamination in the aqueous phase is a concern
  - Enhanced contact time
  - Sites with limited access
  - Overcome injection issues related to gas evolution or other hydrogeological issues






# **If You Need Longer Contact**

#### **©** Can Do Multiple Doses or extend contact:

- Oxidant (or other amendments) will eventually penetrate
- Concentrations of amendments decrease over time until next dose
- Use recirculation to maintain higher concentrations over time





## **Pilot Test Design - Summary**

Socus planning on "physical" parameters

- Robust monitoring to assess contact/distribution
- © Evaluate delivery mechanism
  - Sustainable flow / pressures
  - Daylighting

O Answer Critical Questions:

- Is mass of oxidant enough for mass of contaminant?
- Can I deliver adequate solution volume?
- Groundwater velocity/density driven transport affecting distribution?

Many Designs Are Focused on the Chemical Process With Little Consideration For the Physical Delivery Process





# **Considerations for a Successful ISCO Application**

## Oetailed Characterization of Extent and Distribution of Contaminant

Surgical targeting – use today's tools to define

#### O Adequate Oxidant Loading (Treatability Testing)

- Loading for target demand
- Account for non-target demand
- Critical design step, cannot skip this, but it often is....

© Establish contact with sufficient oxidant (pilot testing)

Onitoring Progress / Real-Time Field Adjustments

5 g/Kg SOD vs. 10 g/Kg SOD?

**Doesn't Sound Like Much** 

**But We Just Doubled** 

**The Oxidant Cost** 



# **Establishing Contact: Injection Strategies**

## Common Strategies\*

- Direct Injection
- Advective Transport
- Recirculation
- Pull-Push
- Density Driven Transport
- Fracturing/High Pressure and Specialized Tools

## Solid Oxidants

- Slurry Emplacements / Slow Release
- Mixing





## **#1 Issue:**

## **Low Injection Volumes**

Poor distribution / limited ROI
More likely to follow preferential pathways
Rely on advection/diffusion
Higher total oxidant demand (TOD)





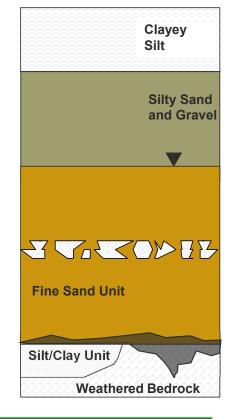
#### Potentially - Less Success



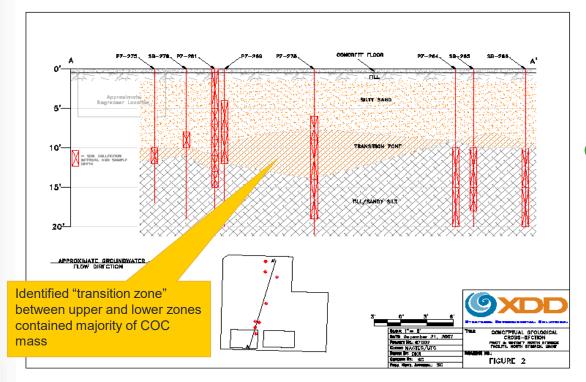
# **#2 Issue: Limited Contact – Space and Time**

#### © Contact with Contaminants

- Need to understand hydrogeology and contaminant distribution
- Tailor injection strategy to geology (recirculation/diffusion-based contact, etc.)
- Groundwater velocity not often considered


### O Anisotropic conditions

- Permeability differences
- Utility conduits/short circuiting
- Density driven transport


## Oxidant Stability

- TOD differences
- Gas Evolution





## Failure Mechanisms – Oxidant Stability - Example





- Poor distribution of active oxidant at required radius of influence
- Gas generation
- Heat generation

#### Ighly Stable – Good (Most of the time)

- Inefficient contact due to high groundwater velocities
- Oxidant is "washed out" of treatment area prior to reacting
- Potential migration to sensitive receptor



## **#3 Issue: Everything Else That Can Go Wrong...**

Geology can drive selection of oxidant
Vapor intrusion concerns
Stratigraphy/trapped gas - daylighting
Oxidant interaction with infrastructure
Impact to sensitive receptors
Perception issues





## **Injection Tools For More Difficult Conditions**

#### Pressure Pulse Technology

- Adapted from Oil and Gas Industry
- Wavefront Technology Solutions Sidewinder Tool
- Badger Injection Solutions

#### Structuring

- FRx Hydraulic
- Pneumatic (GeoSierra/Cascade, ARS/NJIT)

#### O Water Jet/Controlled Fracturing

- BioJet (EOS Remediation)
- Controlled Jet Injection (FRx)
- Pressure Grouting/Mixing Jet Mixing 2 to 5 feet diameter

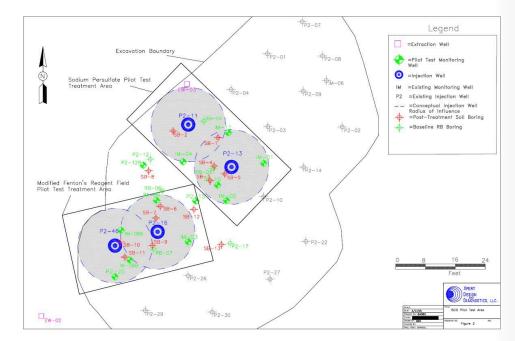






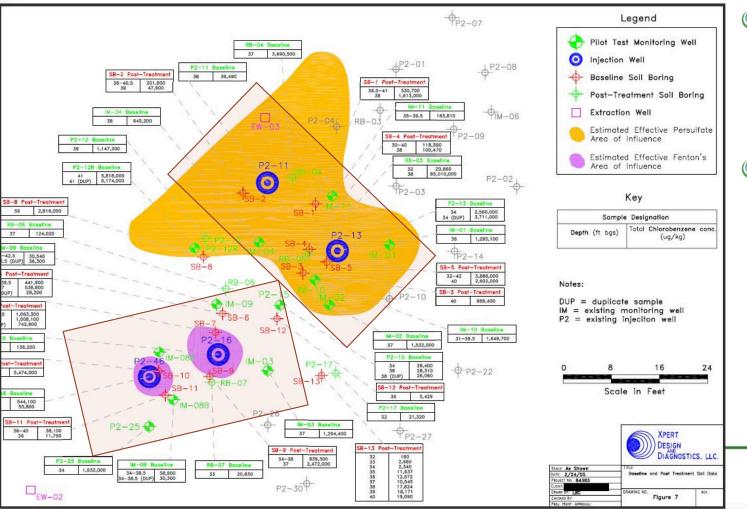


# **Case Studies**


## Case Study 1: Where Have You Been All My (Half) Life?

#### <sup>©</sup> Superfund Site in Maine

- Chlorobenzene impacted overburden/weathered bedrock interface
- Catalyzed hydrogen peroxide (CHP) originally tested and selected by Army Corp (>90% mass reduction in tests looked good!)


#### <sup>(O)</sup> XDD conducted peer review of prior test

- Identified potential failure mechanisms (peroxide instability)
- Conducted additional bench tests using stabilized CHP and activated persulfate





## **Case Study 1: Effective Oxidant Distribution**



#### <sup>©</sup> Peroxide Performance:

Um....yeah how bout them Red Sox!

#### <sup>(O)</sup> Persulfate Performance:

- Est. 3,600 lbs chlorobenzene degraded
- 83% conc. reduction on soil

## Case Study 2: New York, NY Petroleum Hydrocarbons In Situ Treatment with ISCO

Limited Time Offer! During 32 story building construction

## **©** RUSH TAT Treatability Study

- Tested multiple oxidants
- Alkaline activated persulfate selected
- Oxidant loading determined

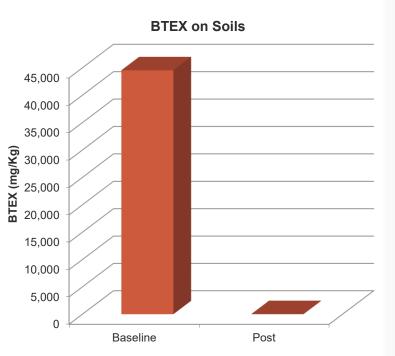
### Ostional States

- Tight schedule: MUST complete in 2 weeks, before slab construction
- Chemical compatibility with construction materials
- Working around construction activities/space limitations
- Maintain traffic accessibility





## Case Study 2: New York, NY Petroleum Hydrocarbons In Situ Treatment with ISCO


- Six days of chemical injection
  - 6,500 SF Area 35,000 Gallons Injected
  - 73,000 pounds persulfate / 33,500 pounds NaOH
  - Sand & Silty Sand (k range = 10-5 cm/s to 10-3 cm/s)
  - Wavefront Technology Solutions USA "Sidewinder" enhanced injection tool
  - Design anticipated 90% reduction

#### Site closed by NYSDEC

- 92 to 95 % groundwater concentration reduction
- > 99 % reduction of BTEX, DRO + GRO on soils
- No rebound after 2 years

#### Take Away:

• Critical up-front bench and design work for success, even when in a rush





# Conclusions

# Conclusions

<sup>©</sup> Poor performance often due to skipping the pre-design engineering:

- Oxidant mass too low for mass of contaminant present
- Volume of oxidant too low
- Not understanding COC mass distribution and target stratigraphy
- "Contact Limitations" distribution and oxidant longevity
- Not performing Site-specific treatability

#### <sup>(C)</sup> The consequences.....

- No apparent effect
- Rebound, and cost....



# **Additional Technical Information**

# **Oxidation Chemistry**

Permanganate  $(MnO_4^-)$ Direct Oxidation:  $MnO_4^- + 4H^+ + 3e \rightarrow MnO_{2(s)} + 2H_2O$ Persulfate  $(S_2O_8^{2-})$ 

Direct Oxidation:  $S_2O_8^{2-} + 2F \rightarrow 2SO_4^{2-}$ Free Radical:  $S_2O_8^{2-} + 2Fe^{+2}$  (or Heat)  $\rightarrow 2SO_4^{-+} + 2Fe^{3+}$ 

Hydrogen Peroxide  $(H_2O_2)$ Direct Oxidation:  $H_2O_2 + H^+ + e^- \leftrightarrow OH^- + H_2O$ Free Radical:  $H_2O_2 + Fe^{+2} + \rightarrow OH^- + OH^- + Fe^{3+}$ 

Ozone (O<sub>3</sub>) Direct Oxidation Under Acidic pH's: O<sub>3</sub> + 2H<sup>+</sup> + 2e<sup>-</sup> + O<sub>2</sub> + 2H<sub>2</sub>O Free Radical Formation: O<sub>3</sub> + OH<sup>-</sup>  $\rightarrow$  O<sub>2</sub><sup>-</sup> + HO<sub>2</sub>



# **Common Oxidants**

| Oxidant                                                   | Potential (V) | Form           | Cost/<br>equiv          |  |
|-----------------------------------------------------------|---------------|----------------|-------------------------|--|
| Fenton's Reagent (OH•)                                    | 2.8           | Liquid         |                         |  |
| Perozone (O <sub>3</sub> + Peroxide)                      | 2.8           | Gas/Liquid     |                         |  |
| Activated Persulfate (SO <sub>4</sub> -•)                 | 2.6           | Salt<br>Liquid |                         |  |
| Ozone (O <sub>3</sub> )                                   | 2.42<br>2.07  | Gas            | 0.020<br>0.053          |  |
| Persulfate (S <sub>2</sub> O <sub>8</sub> <sup>2-</sup> ) | 2.01          | Salt<br>Liquid | 0.030                   |  |
| Hydrogen Peroxide (H <sub>2</sub> O <sub>2</sub> )        | 1.78          | Liquid         | 0.026                   |  |
| Permanganate (MnO <sub>4</sub> -)                         | 1.68          | Salt<br>Liquid | 0.017 - K<br>0.031 - Na |  |



Costs adapted from Siegrist et al., 2001



# **Chemical Background**

**DK1** Remove slide 3 and 4 - too technical for group. Masters level chemistry. Dennis Keane, 5/1/2018

#### DK2

# **Contaminant Type**

| Contaminant                                | MnO <sub>4</sub> | S <sub>2</sub> O <sub>8</sub> | SO₄• | Fenton's | Ozone |
|--------------------------------------------|------------------|-------------------------------|------|----------|-------|
| Petroleum Hydrocarbon                      | G/E              | G/E                           | G/E  | Е        | E     |
| Benzene                                    | Р                | G                             | G/E  | Е        | E     |
| Phenols                                    | G                | P/G                           | G/E  | Е        | E1    |
| Polycyclic Aromatic Hydrocarbons<br>(PAHs) | G                | G                             | E    | E        | E     |
| MTBE                                       | G                | P/G                           | G/E  | G        | G     |
| Chlorinated Ethenes                        | E                | G                             | E    | Е        | E     |
| (PCE, TCE, DCE, VC)                        |                  |                               |      |          |       |
| Carbon Tetrachloride                       | Р                | Р                             | P/G  | P/G      | P/G   |
| Chlorinated Ethanes (TCA, DCA)             | Р                | Р                             | G/E  | G/E      | G     |
| Polychlorinated Biphenyl's (PCBs)          | Р                | Р                             | Р    | Р        | G1    |
| Energetics (RDX, HMX)                      | E                | ?                             | E    | ?        | ?     |

P = poor G = good E = excellent 1=perozone



#### DK2 Add dioxane, PFAS into this slide? Dennis Keane, 7/25/2018

## Permanganate – MnO<sub>4</sub>-

#### **Advantages**

- I High stability in subsurface
- Provides better overall efficiency
- Allows for diffusion into tight soils & porous rock
- No gas/heat production less health & safety issues
- O Applicable over wide pH range
- Many successful in-situ field applications

- O Lower oxidation potential
  - Narrower range of contaminant applicability
- Metal impurities in product
- O Potential pore clogging due to precipitates



# Persulfate – S<sub>2</sub>O<sub>8</sub>

#### **Advantages**

- Can be catalyzed by reduced metals or heat to promotes Sulfate Free Radical (SFR) formation
- I High oxidation potential
  - applicable to wide range of organics

- Reaction kinetics heavily dependent on activation technique
- May have high non-target demand
- O Possible localized low pH



## Hydrogen Peroxide – H<sub>2</sub>O<sub>2</sub>

#### **Advantages**

- I High oxidation potential
  - applicable to wide range of organics
- The most studied of the oxidizing compounds for remediation
- Can be combined with ozone (perozone)

- Reaction's gas/heat production health & safety hazard
- Short half-life
  - limited travel distances, requires closely spaced injection points
- Optimal pH between 3–5
- Ineffective in alkaline environments



# Ozone – O<sub>3</sub>

#### **Advantages**

- I High oxidation potential
  - applicable to wide range of organics
- © Extraction/Oxidation process
- Easier to apply than liquid oxidants in vadose zone
- Generated on-site, allows for continual application
- O Decomposes to oxygen which can stimulate aerobic bioremediation

- Less stable than liquid oxidants resulting in shorter half-life
- Effective distribution in saturated zone requires array of injection points
- Confined aquifer usage requires pressure (gas) relief

